These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 27314420)
1. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. Puigserver D; Herrero J; Torres M; Cortés A; Nijenhuis I; Kuntze K; Parker BL; Carmona JM Environ Sci Pollut Res Int; 2016 Sep; 23(18):18724-41. PubMed ID: 27314420 [TBL] [Abstract][Full Text] [Related]
2. Biotic and abiotic reductive dechlorination of chloroethenes in aquitards. Puigserver D; Herrero J; Nogueras X; Cortés A; Parker BL; Playà E; Carmona JM Sci Total Environ; 2022 Apr; 816():151532. PubMed ID: 34752872 [TBL] [Abstract][Full Text] [Related]
3. Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts. Puigserver D; Cortés A; Viladevall M; Nogueras X; Parker BL; Carmona JM J Contam Hydrol; 2014 Nov; 168():25-40. PubMed ID: 25278314 [TBL] [Abstract][Full Text] [Related]
4. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone. Cápiro NL; Löffler FE; Pennell KD J Contam Hydrol; 2015 Nov; 182():78-90. PubMed ID: 26348832 [TBL] [Abstract][Full Text] [Related]
5. Mobilization pilot test of PCE sources in the transition zone to aquitards by combining mZVI and biostimulation with lactic acid. Puigserver D; Herrero J; Carmona JM Sci Total Environ; 2023 Jun; 877():162751. PubMed ID: 36921871 [TBL] [Abstract][Full Text] [Related]
6. Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation. Puigserver D; Herrero J; Parker BL; Carmona JM Sci Total Environ; 2020 Apr; 712():135679. PubMed ID: 31785913 [TBL] [Abstract][Full Text] [Related]
7. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater. Patil SS; Adetutu EM; Aburto-Medina A; Menz IR; Ball AS Biotechnol Lett; 2014 Jan; 36(1):75-83. PubMed ID: 24101252 [TBL] [Abstract][Full Text] [Related]
8. Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Sleep BE; Seepersad DJ; Kaiguo MO; Heidorn CM; Hrapovic L; Morrill PL; McMaster ML; Hood ED; Lebron C; Lollar BS; Major DW; Edwards EA Environ Sci Technol; 2006 Jun; 40(11):3623-33. PubMed ID: 16786703 [TBL] [Abstract][Full Text] [Related]
9. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. Badin A; Broholm MM; Jacobsen CS; Palau J; Dennis P; Hunkeler D J Contam Hydrol; 2016 Sep; 192():1-19. PubMed ID: 27318432 [TBL] [Abstract][Full Text] [Related]
10. Effectiveness of stimulating PCE reductive dechlorination: a step-wise approach. Ni Z; Smit M; Grotenhuis T; van Gaans P; Rijnaarts H J Contam Hydrol; 2014 Aug; 164():209-18. PubMed ID: 24995946 [TBL] [Abstract][Full Text] [Related]
11. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites. Scheutz C; Durant ND; Broholm MM Biodegradation; 2014 Jun; 25(3):459-78. PubMed ID: 24233554 [TBL] [Abstract][Full Text] [Related]
12. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid. Philips J; Springael D; Smolders E Chemosphere; 2011 May; 83(7):991-6. PubMed ID: 21376368 [TBL] [Abstract][Full Text] [Related]
13. Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. Zhao S; He J FEMS Microbiol Ecol; 2019 Jan; 95(1):. PubMed ID: 30339222 [TBL] [Abstract][Full Text] [Related]
14. Bio-reduction of tetrachloroethen using a H2-based membrane biofilm reactor and community fingerprinting. Karataş S; Hasar H; Taşkan E; Özkaya B; Şahinkaya E Water Res; 2014 Jul; 58():21-8. PubMed ID: 24731873 [TBL] [Abstract][Full Text] [Related]
15. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes. Matturro B; Presta E; Rossetti S Sci Total Environ; 2016 Mar; 545-546():445-52. PubMed ID: 26748009 [TBL] [Abstract][Full Text] [Related]
16. The role of ecotones in the dehalogenation of chloroethenes in alluvial fan aquifers. Herrero J; Puigserver D; Nijenhuis I; Kuntze K; Parker BL; Carmona JM Environ Sci Pollut Res Int; 2021 Jun; 28(21):26871-26884. PubMed ID: 33495954 [TBL] [Abstract][Full Text] [Related]
17. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2. Hiortdahl KM; Borden RC Environ Sci Technol; 2014; 48(1):624-31. PubMed ID: 24328264 [TBL] [Abstract][Full Text] [Related]
18. Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Da Silva ML; Daprato RC; Gomez DE; Hughes JB; Ward CH; Alvarez PJ Water Environ Res; 2006 Dec; 78(13):2456-65. PubMed ID: 17243245 [TBL] [Abstract][Full Text] [Related]
19. Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm. Xu G; Lu Q; Yu L; Wang S Water Res; 2019 Apr; 152():87-95. PubMed ID: 30665163 [TBL] [Abstract][Full Text] [Related]
20. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study. Wang SY; Chen SC; Lin YC; Kuo YC; Chen JY; Kao CM Chemosphere; 2016 Oct; 160():216-29. PubMed ID: 27376861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]