BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27314505)

  • 1. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.
    Liao X; Zhang Z; Liao Q; Liang Q; Ou Y; Xu M; Li M; Zhang G; Zhang Y
    Nanoscale; 2016 Jul; 8(26):13025-32. PubMed ID: 27314505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity.
    Wang X; Li J; Song H; Huang H; Gou J
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7371-7380. PubMed ID: 29432684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube-Polymer Composites.
    Wajahat M; Lee S; Kim JH; Chang WS; Pyo J; Cho SH; Seol SK
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19999-20005. PubMed ID: 29808984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible, Cuttable, and Self-Waterproof Bending Strain Sensors Using Microcracked Gold Nanofilms@Paper Substrate.
    Liao X; Zhang Z; Liang Q; Liao Q; Zhang Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):4151-4158. PubMed ID: 28071895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics.
    Xu M; Qi J; Li F; Zhang Y
    Nanoscale; 2018 Mar; 10(11):5264-5271. PubMed ID: 29498389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring.
    Zhang BC; Wang H; Zhao Y; Li F; Ou XM; Sun BQ; Zhang XH
    Nanoscale; 2016 Jan; 8(4):2123-8. PubMed ID: 26725832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.
    Tao LQ; Wang DY; Tian H; Ju ZY; Liu Y; Pang Y; Chen YQ; Yang Y; Ren TL
    Nanoscale; 2017 Jun; 9(24):8266-8273. PubMed ID: 28585963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sheath-Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors.
    Zhang M; Wang C; Wang Q; Jian M; Zhang Y
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20894-9. PubMed ID: 27462991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors.
    Kim JY; Ji S; Jung S; Ryu BH; Kim HS; Lee SS; Choi Y; Jeong S
    Nanoscale; 2017 Aug; 9(31):11035-11046. PubMed ID: 28580999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection.
    Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I
    Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.
    Park JJ; Hyun WJ; Mun SC; Park YT; Park OO
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6317-24. PubMed ID: 25735398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks.
    Song H; Zhang J; Chen D; Wang K; Niu S; Han Z; Ren L
    Nanoscale; 2017 Jan; 9(3):1166-1173. PubMed ID: 28009874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printable Graphene-Sustainable Elastomer-Based Cross Talk Free Sensor for Point of Care Diagnostics.
    Sharma S; Selvan M; Naskar S; Mondal S; Adhya P; Mukhopadhyay T; Mondal T
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57265-57280. PubMed ID: 36519850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise Engineering of Conductive Pathway by Frictional Direct-Writing for Ultrasensitive Flexible Strain Sensors.
    Zeng Z; Yu Y; Song Y; Tang N; Ye L; Zang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):41078-41086. PubMed ID: 29094923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.
    Yokota T; Inoue Y; Terakawa Y; Reeder J; Kaltenbrunner M; Ware T; Yang K; Mabuchi K; Murakawa T; Sekino M; Voit W; Sekitani T; Someya T
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14533-8. PubMed ID: 26554008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-Based Sensors for Gas, Humidity, and Strain Detections: A Review.
    Tai H; Duan Z; Wang Y; Wang S; Jiang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31037-31053. PubMed ID: 32584534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive Strain Sensors Based on Molecules-Gold Nanoparticles Networks for High-Resolution Human Pulse Analysis.
    Huang CB; Yao Y; Montes-García V; Stoeckel MA; Von Holst M; Ciesielski A; Samorì P
    Small; 2021 Feb; 17(8):e2007593. PubMed ID: 33464719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical Evaluation of Printed Strain Sensors Based on Long-Term Static Strain Measurements.
    Zymelka D; Togashi K; Takeshita T; Yamashita T; Kobayashi T
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics.
    Yao Y; Glisic B
    Sensors (Basel); 2015 Apr; 15(4):8088-108. PubMed ID: 25853407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.
    Amjadi M; Turan M; Clementson CP; Sitti M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5618-26. PubMed ID: 26842553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.