These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27314827)

  • 41. Identifying Key Residues That Drive Strong Electrostatic Attractions between Therapeutic Antibodies.
    Ferreira GM; Shahfar H; Sathish HA; Remmele RL; Roberts CJ
    J Phys Chem B; 2019 Dec; 123(50):10642-10653. PubMed ID: 31739660
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.
    Perez Sirkin YA; Factorovich MH; Molinero V; Scherlis DA
    J Chem Theory Comput; 2016 Jun; 12(6):2942-9. PubMed ID: 27196963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling Protein-Protein Recognition in Solution Using the Coarse-Grained Force Field SCORPION.
    Basdevant N; Borgis D; Ha-Duong T
    J Chem Theory Comput; 2013 Jan; 9(1):803-13. PubMed ID: 26589072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of Protein Aggregation in High Concentration Protein Solutions Utilizing Protein-Protein Interactions Determined by Low Volume Static Light Scattering.
    Hofmann M; Winzer M; Weber C; Gieseler H
    J Pharm Sci; 2016 Jun; 105(6):1819-1828. PubMed ID: 27157445
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new coarse-grained model for water: the importance of electrostatic interactions.
    Wu Z; Cui Q; Yethiraj A
    J Phys Chem B; 2010 Aug; 114(32):10524-9. PubMed ID: 20701383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration.
    Hladílková J; Callisen TH; Lund M
    J Phys Chem B; 2016 Apr; 120(13):3303-10. PubMed ID: 26815664
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and Relaxation in Solutions of Monoclonal Antibodies.
    Wang G; Varga Z; Hofmann J; Zarraga IE; Swan JW
    J Phys Chem B; 2018 Mar; 122(11):2867-2880. PubMed ID: 29469576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Weak antibody-cyclodextrin interactions determined by quartz crystal microbalance and dynamic/static light scattering.
    Härtl E; Dixit N; Besheer A; Kalonia D; Winter G
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):781-9. PubMed ID: 23685354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Charge-induced patchy attractions between proteins.
    Li W; Persson BA; Morin M; Behrens MA; Lund M; Zackrisson Oskolkova M
    J Phys Chem B; 2015 Jan; 119(2):503-8. PubMed ID: 25494398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies.
    Pathak JA; Nugent S; Bender MF; Roberts CJ; Curtis RJ; Douglas JF
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Weak self-interactions of globular proteins studied by small-angle X-ray scattering and structure-based modeling.
    Kaieda S; Lund M; Plivelic TS; Halle B
    J Phys Chem B; 2014 Aug; 118(34):10111-9. PubMed ID: 25117055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light Scattering to Quantify Protein-Protein Interactions at High Protein Concentrations.
    Woldeyes MA; Calero-Rubio C; Furst EM; Roberts CJ
    Methods Mol Biol; 2019; 2039():23-37. PubMed ID: 31342416
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An alternative assay to hydrophobic interaction chromatography for high-throughput characterization of monoclonal antibodies.
    Estep P; Caffry I; Yu Y; Sun T; Cao Y; Lynaugh H; Jain T; Vásquez M; Tessier PM; Xu Y
    MAbs; 2015; 7(3):553-61. PubMed ID: 25790175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations.
    Riniker S; van Gunsteren WF
    J Chem Phys; 2011 Feb; 134(8):084110. PubMed ID: 21361530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular origins of osmotic second virial coefficients of proteins.
    Neal BL; Asthagiri D; Lenhoff AM
    Biophys J; 1998 Nov; 75(5):2469-77. PubMed ID: 9788942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient.
    Elcock AH; McCammon JA
    Biophys J; 2001 Feb; 80(2):613-25. PubMed ID: 11159430
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions.
    Lewus RA; Levy NE; Lenhoff AM; Sandler SI
    Biotechnol Prog; 2015; 31(1):268-76. PubMed ID: 25378269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systematic Generation of Anisotropic Coarse-Grained Lennard-Jones Potentials and Their Application to Ordered Soft Matter.
    Tillack AF; Johnson LE; Eichinger BE; Robinson BH
    J Chem Theory Comput; 2016 Sep; 12(9):4362-74. PubMed ID: 27434770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.