BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27314866)

  • 1. Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study.
    Mahdizadeh SJ; Goharshadi EK; Akhlamadi G
    J Mol Graph Model; 2016 Jul; 68():1-13. PubMed ID: 27314866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport in hexagonal boron nitride nanoribbons.
    Ouyang T; Chen Y; Xie Y; Yang K; Bao Z; Zhong J
    Nanotechnology; 2010 Jun; 21(24):245701. PubMed ID: 20484794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons.
    Chen W; Li Y; Yu G; Li CZ; Zhang SB; Zhou Z; Chen Z
    J Am Chem Soc; 2010 Feb; 132(5):1699-705. PubMed ID: 20085366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimensional Crossover of Thermal Transport in Hybrid Boron Nitride Nanostructures.
    Sakhavand N; Shahsavari R
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18312-9. PubMed ID: 26158661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield synthesis of boron nitride nanoribbons via longitudinal splitting of boron nitride nanotubes by potassium vapor.
    Sinitskii A; Erickson KJ; Lu W; Gibb AL; Zhi C; Bando Y; Golberg D; Zettl A; Tour JM
    ACS Nano; 2014 Oct; 8(10):9867-73. PubMed ID: 25227319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity and heat transport properties of nitrogen-doped graphene.
    Goharshadi EK; Mahdizadeh SJ
    J Mol Graph Model; 2015 Nov; 62():74-80. PubMed ID: 26386455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons.
    Erickson KJ; Gibb AL; Sinitskii A; Rousseas M; Alem N; Tour JM; Zettl AK
    Nano Lett; 2011 Aug; 11(8):3221-6. PubMed ID: 21608991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular dynamics study of the mechanical properties of graphene nanoribbon-embedded gold composites.
    Chien SK; Yang YT; Chen CK
    Nanoscale; 2011 Oct; 3(10):4307-13. PubMed ID: 21904757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of Atomically Functionalized C-Doped Boron Nitride Nanoribbons and Their Interaction with Organosulfur Compounds.
    Villanueva-Mejia F; Navarro-Santos P; Rodríguez-Kessler PL; Herrera-Bucio R; Rivera JL
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30889813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy gaps and stark effect in boron nitride nanoribbons.
    Park CH; Louie SG
    Nano Lett; 2008 Aug; 8(8):2200-3. PubMed ID: 18593205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity.
    Stewart DA; Savić I; Mingo N
    Nano Lett; 2009 Jan; 9(1):81-4. PubMed ID: 19090747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and thermal characterizations of nanoporous two-dimensional boron nitride membranes.
    Pham VT; Fang TH
    Sci Rep; 2022 Apr; 12(1):6306. PubMed ID: 35428858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulation of Improving the Physical Properties of Polytetrafluoroethylene Cable Insulation Materials by Boron Nitride Nanoparticle under Moisture-Temperature-Electric Fields Conditions.
    Hua X; Wang L; Yang S
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31163626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.
    Roosta S; Hashemianzadeh SM; Ketabi S
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():98-103. PubMed ID: 27287103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length-Diameter Ratio Filler.
    Zhang B; Liang Y; Liu B; Liu W; Liu Z
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32486186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of increasing temperature on simulated nanocomposites reinforced with SWBNNs and its effect on characteristics related to mechanics and the physical attributes using the MDs approach.
    Tavasolikejani S; Farazin A
    Heliyon; 2023 Oct; 9(10):e21022. PubMed ID: 37867868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Transport Engineering in Graphdiyne and Graphdiyne Nanoribbons.
    Wan Y; Xiong S; Ouyang B; Niu Z; Ni Y; Zhao Y; Zhang X
    ACS Omega; 2019 Feb; 4(2):4147-4152. PubMed ID: 31459623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects.
    Chen W; Li Y; Yu G; Zhou Z; Chen Z
    J Chem Theory Comput; 2009 Nov; 5(11):3088-95. PubMed ID: 26609988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular temperature descriptors as a novel approach for QSPR analysis of Borophene nanosheets.
    Khan AR; Ullah Z; Imran M; Malik SA; Alamoudi LM; Cancan M
    PLoS One; 2024; 19(6):e0302157. PubMed ID: 38889107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride.
    Thomas S; Ajith KM; Valsakumar MC
    J Phys Condens Matter; 2016 Jul; 28(29):295302. PubMed ID: 27255345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.