These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27314866)

  • 21. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization.
    Wu H; Kessler MR
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5915-26. PubMed ID: 25726956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical aspects of the unzipping of multiwalled boron nitride nanotubes.
    Perim E; Autreto PA; Paupitz R; Galvao DS
    Phys Chem Chem Phys; 2013 Nov; 15(44):19147-50. PubMed ID: 23999943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Static and dynamic properties of single-walled boron nitride nanotubes.
    Li C; Chou TW
    J Nanosci Nanotechnol; 2006 Jan; 6(1):54-60. PubMed ID: 16573069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon stability, electronic structure results, mechanical and thermodynamic properties of RbSbO
    Dar SA; Sharma R; Mishra AK
    J Mol Graph Model; 2019 Jul; 90():120-127. PubMed ID: 31075658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures.
    Xie L; Wang T; He C; Sun Z; Peng Q
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31330928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Width Dependent Elastic Properties of Graphene Nanoribbons.
    Kalosakas G; Lathiotakis NN; Papagelis K
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrolytic Unzipping of Boron Nitride Nanotubes in Nitric Acid.
    Kim D; Muramatsu H; Kim YA
    Nanoscale Res Lett; 2017 Dec; 12(1):94. PubMed ID: 28176285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermo-mechanical stability and strength of peptide nanostructures from molecular dynamics: self-assembled cyclic peptide nanotubes.
    Diaz JA; Cağin T
    Nanotechnology; 2010 Mar; 21(11):115703. PubMed ID: 20173235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces.
    Yang J; Yang Y; Waltermire SW; Wu X; Zhang H; Gutu T; Jiang Y; Chen Y; Zinn AA; Prasher R; Xu TT; Li D
    Nat Nanotechnol; 2011 Dec; 7(2):91-5. PubMed ID: 22157726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kraft lignin/cubic boron nitride hybrid materials as functional components for abrasive tools.
    Klapiszewski Ł; Jamrozik A; Strzemiecka B; Jakubowska P; Szalaty TJ; Szewczyńska M; Voelkel A; Jesionowski T
    Int J Biol Macromol; 2019 Feb; 122():88-94. PubMed ID: 30393140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size and temperature effect of Young's modulus of boron nitride nanosheet.
    Qin H; Liang Y; Huang J
    J Phys Condens Matter; 2020 Jan; 32(3):035302. PubMed ID: 31574495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation into the mechanical properties of single-walled carbon nanotube heterojunctions.
    Lee WJ; Su WS
    Phys Chem Chem Phys; 2013 Jul; 15(27):11579-85. PubMed ID: 23752892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water-Induced Bandgap Engineering in Nanoribbons of Hexagonal Boron Nitride.
    Chen C; Hang Y; Wang HS; Wang Y; Wang X; Jiang C; Feng Y; Liu C; Janzen E; Edgar JH; Wei Z; Guo W; Hu W; Zhang Z; Wang H; Xie X
    Adv Mater; 2023 Sep; 35(36):e2303198. PubMed ID: 37400106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal conductivity of carbon nanotubes with quantum correction via heat capacity.
    Wu MC; Hsu JY
    Nanotechnology; 2009 Apr; 20(14):145401. PubMed ID: 19420526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons.
    Kosevich YA; Savin AV; Cantarero A
    Nanoscale Res Lett; 2013 Jan; 8(1):7. PubMed ID: 23281873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers.
    Thomas M; Enciso M; Hilder TA
    J Phys Chem B; 2015 Apr; 119(15):4929-36. PubMed ID: 25800058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations on miscibility, glass transition temperature and mechanical properties of PMMA/DBP binary system.
    Li J; Jin S; Lan G; Chen S; Li L
    J Mol Graph Model; 2018 Sep; 84():182-188. PubMed ID: 30015050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling.
    Kim D; Nakajima S; Sawada T; Iwasaki M; Kawauchi S; Zhi C; Bando Y; Golberg D; Serizawa T
    Chem Commun (Camb); 2015 Apr; 51(33):7104-7. PubMed ID: 25704271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.