BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27314900)

  • 1. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?
    Reddy PVL; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2016 Oct; 568():470-479. PubMed ID: 27314900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Stresses Increase Photosynthetic Disruption by Metal Oxide Nanomaterials in a Soil-Grown Plant.
    Conway JR; Beaulieu AL; Beaulieu NL; Mazer SJ; Keller AA
    ACS Nano; 2015 Dec; 9(12):11737-49. PubMed ID: 26505090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants.
    Hatami M; Kariman K; Ghorbanpour M
    Sci Total Environ; 2016 Nov; 571():275-91. PubMed ID: 27485129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered nanomaterials for plant growth and development: A perspective analysis.
    Verma SK; Das AK; Patel MK; Shah A; Kumar V; Gantait S
    Sci Total Environ; 2018 Jul; 630():1413-1435. PubMed ID: 29554761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling.
    Gottschalk F; Kost E; Nowack B
    Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage assessment for soybean cultivated in soil with either CeO
    Priester JH; Moritz SC; Espinosa K; Ge Y; Wang Y; Nisbet RM; Schimel JP; Susana Goggi A; Gardea-Torresdey JL; Holden PA
    Sci Total Environ; 2017 Feb; 579():1756-1768. PubMed ID: 27939199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches.
    Kwak JI; An YJ
    Environ Res; 2016 Nov; 151():368-382. PubMed ID: 27540869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.
    Zuverza-Mena N; Martínez-Fernández D; Du W; Hernandez-Viezcas JA; Bonilla-Bird N; López-Moreno ML; Komárek M; Peralta-Videa JR; Gardea-Torresdey JL
    Plant Physiol Biochem; 2017 Jan; 110():236-264. PubMed ID: 27289187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model.
    Garner KL; Suh S; Keller AA
    Environ Sci Technol; 2017 May; 51(10):5541-5551. PubMed ID: 28443660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
    Som C; Wick P; Krug H; Nowack B
    Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnology in soil remediation - applications vs. implications.
    Qian Y; Qin C; Chen M; Lin S
    Ecotoxicol Environ Saf; 2020 Sep; 201():110815. PubMed ID: 32559688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments.
    Gardea-Torresdey JL; Rico CM; White JC
    Environ Sci Technol; 2014; 48(5):2526-40. PubMed ID: 24499408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil.
    Wang C; Chen L; Xu J; Zhang L; Yang X; Zhang X; Zhang C; Gao P; Zhu L
    Environ Res; 2024 Feb; 242():117820. PubMed ID: 38048867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and transformations of engineered nanomaterials: Critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana.
    Montes A; Bisson MA; Gardella JA; Aga DS
    Sci Total Environ; 2017 Dec; 607-608():1497-1516. PubMed ID: 28793406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental behavior of coated NMs: Physicochemical aspects and plant interactions.
    López-Moreno ML; Cedeño-Mattei Y; Bailón-Ruiz SJ; Vazquez-Nuñez E; Hernandez-Viezcas JA; Perales-Pérez OJ; la Rosa G; Peralta-Videa JR; Gardea-Torresdey JL
    J Hazard Mater; 2018 Apr; 347():196-217. PubMed ID: 29331809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems.
    Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V
    Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.