These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27314900)

  • 41. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials.
    Juganson K; Ivask A; Blinova I; Mortimer M; Kahru A
    Beilstein J Nanotechnol; 2015; 6():1788-804. PubMed ID: 26425431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
    Zhu M; Nie G; Meng H; Xia T; Nel A; Zhao Y
    Acc Chem Res; 2013 Mar; 46(3):622-31. PubMed ID: 22891796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges.
    Li X; Peng T; Mu L; Hu X
    Ecotoxicol Environ Saf; 2019 Nov; 184():109602. PubMed ID: 31493589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silver engineered nanomaterials and ions elicit species-specific O
    Lewis RW; Unrine J; Bertsch PM; McNear DH
    Biointerphases; 2017 Oct; 12(5):05G604. PubMed ID: 28978203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanomaterials in Biosolids Inhibit Nodulation, Shift Microbial Community Composition, and Result in Increased Metal Uptake Relative to Bulk/Dissolved Metals.
    Judy JD; McNear DH; Chen C; Lewis RW; Tsyusko OV; Bertsch PM; Rao W; Stegemeier J; Lowry GV; McGrath SP; Durenkamp M; Unrine JM
    Environ Sci Technol; 2015 Jul; 49(14):8751-8. PubMed ID: 26061863
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions, Transformations, and Bioavailability of Nano-Copper Exposed to Root Exudates.
    Huang Y; Zhao L; Keller AA
    Environ Sci Technol; 2017 Sep; 51(17):9774-9783. PubMed ID: 28771344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Current situation on the availability of nanostructure-biological activity data.
    Oksel C; Ma CY; Wang XZ
    SAR QSAR Environ Res; 2015; 26(2):79-94. PubMed ID: 25608859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Material-specific properties applied to an environmental risk assessment of engineered nanomaterials - implications on grouping and read-across concepts.
    Wigger H; Nowack B
    Nanotoxicology; 2019 Jun; 13(5):623-643. PubMed ID: 30727799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector.
    Kranjc E; Drobne D
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31366106
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants.
    Neale PA; Jämting ÅK; Escher BI; Herrmann J
    Water Sci Technol; 2013; 68(7):1440-53. PubMed ID: 24135091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials.
    Carboni A; Slomberg DL; Nassar M; Santaella C; Masion A; Rose J; Auffan M
    Environ Sci Technol; 2021 Dec; 55(24):16270-16282. PubMed ID: 34854667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
    Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B
    Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Environmental risk assessment of engineered nano-SiO
    Wang Y; Nowack B
    Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived.
    Moore JD; Stegemeier JP; Bibby K; Marinakos SM; Lowry GV; Gregory KB
    Environ Sci Technol; 2016 Mar; 50(5):2641-51. PubMed ID: 26841726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions.
    He X; Fu P; Aker WG; Hwang HM
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018 Jan; 36(1):21-42. PubMed ID: 29297743
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench.
    Handy RD; Cornelis G; Fernandes T; Tsyusko O; Decho A; Sabo-Attwood T; Metcalfe C; Steevens JA; Klaine SJ; Koelmans AA; Horne N
    Environ Toxicol Chem; 2012 Jan; 31(1):15-31. PubMed ID: 22002667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A review of the fate of engineered nanomaterials in municipal solid waste streams.
    Part F; Berge N; Baran P; Stringfellow A; Sun W; Bartelt-Hunt S; Mitrano D; Li L; Hennebert P; Quicker P; Bolyard SC; Huber-Humer M
    Waste Manag; 2018 May; 75():427-449. PubMed ID: 29477652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transparent stakeholder engagement in practice: Lessons learned from applying comprehensive environmental assessment to research planning for nanomaterials.
    Powers C; Hendren C; Wang A; Davis JM
    Integr Environ Assess Manag; 2014 Oct; 10(4):498-510. PubMed ID: 24729532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fate and transport of engineered nanomaterials in the environment.
    Lin D; Tian X; Wu F; Xing B
    J Environ Qual; 2010; 39(6):1896-908. PubMed ID: 21284287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver.
    Llewellyn SV; Conway GE; Zanoni I; Jørgensen AK; Shah UK; Seleci DA; Keller JG; Kim JW; Wohlleben W; Jensen KA; Costa A; Jenkins GJS; Clift MJD; Doak SH
    J Nanobiotechnology; 2021 Jun; 19(1):193. PubMed ID: 34183029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.