BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27315166)

  • 1. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.
    Vimercati L; Hamsher S; Schubert Z; Schmidt SK
    Extremophiles; 2016 Sep; 20(5):579-88. PubMed ID: 27315166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles.
    Schmidt SK; Vimercati L
    J Microbiol; 2019 Apr; 57(4):243-251. PubMed ID: 30721458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?
    Schmidt SK; Gendron EMS; Vincent K; Solon AJ; Sommers P; Schubert ZR; Vimercati L; Porazinska DL; Darcy JL; Sowell P
    Antonie Van Leeuwenhoek; 2018 Aug; 111(8):1389-1401. PubMed ID: 29557533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-thaw tolerance and clues to the winter survival of a soil community.
    Walker VK; Palmer GR; Voordouw G
    Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events.
    Lipson DA; Monson RK
    Oecologia; 1998 Jan; 113(3):406-414. PubMed ID: 28307826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited Response of Indigenous Microbes to Water and Nutrient Pulses in High-Elevation Atacama Soils: Implications for the Cold-Dry Limits of Life on Earth.
    Vimercati L; Bueno de Mesquita CP; Schmidt SK
    Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32708721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment.
    Stres B; Philippot L; Faganeli J; Tiedje JM
    FEMS Microbiol Ecol; 2010 Nov; 74(2):323-35. PubMed ID: 20735477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A
    Schmidt SK; Vimercati L; Darcy JL; Arán P; Gendron EMS; Solon AJ; Porazinska D; Dorador C
    Mycology; 2017; 8(3):153-163. PubMed ID: 30123637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat.
    Sawicka JE; Robador A; Hubert C; Jørgensen BB; Brüchert V
    ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil.
    Kato S; Jenkins MB; Fogarty EA; Bowman DD
    J Parasitol; 2002 Aug; 88(4):718-22. PubMed ID: 12197120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamic change of dissolved iron in wetland soil solutions responding to freeze-thaw cycles].
    Yu XF; Wang GP; Lü XG; Zou YC; Jiang M
    Huan Jing Ke Xue; 2010 May; 31(5):1387-94. PubMed ID: 20623881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze-thaw revival of rotifers and algae in a desiccated, high-elevation (5500 meters) microbial mat, high Andes, Perú.
    Schmidt SK; Darcy JL; Sommers P; Gunawan E; Knelman JE; Yager K
    Extremophiles; 2017 May; 21(3):573-580. PubMed ID: 28321614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú.
    Schmidt SK; Nemergut DR; Miller AE; Freeman KR; King AJ; Seimon A
    Extremophiles; 2009 Sep; 13(5):807-16. PubMed ID: 19597697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climatic variation and seed persistence: freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens.
    Connolly BM; Orrock JL
    Oecologia; 2015 Oct; 179(2):609-16. PubMed ID: 26078006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.
    Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S
    Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency.
    Yergeau E; Kowalchuk GA
    Environ Microbiol; 2008 Sep; 10(9):2223-35. PubMed ID: 18479442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased susceptibility to repeated freeze-thaw cycles in Escherichia coli following long-term evolution in a benign environment.
    Sleight SC; Wigginton NS; Lenski RE
    BMC Evol Biol; 2006 Dec; 6():104. PubMed ID: 17147797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation.
    Woolley ML; Schulsinger DA; Durand DB; Zeltser IS; Waltzer WC
    J Endourol; 2002 Sep; 16(7):519-22. PubMed ID: 12396446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).
    Mayr S; Gruber A; Bauer H
    Planta; 2003 Jul; 217(3):436-41. PubMed ID: 14520570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze/thaw stress in Ceanothus of southern California chaparral.
    Ewers FW; Lawson MC; Bowen TJ; Davis SD
    Oecologia; 2003 Jul; 136(2):213-9. PubMed ID: 12740694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.