BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2731532)

  • 1. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.
    van der Woude LH; Veeger HE; Rozendal RH; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1989; 58(6):625-32. PubMed ID: 2731532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheelchair propulsion: effects of experience and push strategy on efficiency and perceived exertion.
    Lenton JP; Fowler NE; van der Woude L; Goosey-Tolfrey VL
    Appl Physiol Nutr Metab; 2008 Oct; 33(5):870-9. PubMed ID: 18923561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of arm frequency during synchronous and asynchronous wheelchair propulsion on efficiency.
    Lenton JP; van der Woude L; Fowler N; Goosey-Tolfrey V
    Int J Sports Med; 2009 Apr; 30(4):233-9. PubMed ID: 19199211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manual wheelchair propulsion: effects of power output on physiology and technique.
    van der Woude LH; Hendrich KM; Veeger HE; van Ingen Schenau GJ; Rozendal RH; de Groot G; Hollander AP
    Med Sci Sports Exerc; 1988 Feb; 20(1):70-8. PubMed ID: 2963939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of push frequency on the economy of wheelchair racers.
    Goosey VL; Campbell IG; Fowler NE
    Med Sci Sports Exerc; 2000 Jan; 32(1):174-81. PubMed ID: 10647546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand-rim forces and gross mechanical efficiency at various frequencies of wheelchair propulsion.
    Lenton JP; van der Woude LH; Fowler NE; Nicholson G; Tolfrey K; Goosey-Tolfrey VL
    Int J Sports Med; 2013 Feb; 34(2):158-64. PubMed ID: 22918717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion.
    Fabre N; Perrey S; Arbez L; Ruiz J; Tordi N; Rouillon JD
    Int J Sports Med; 2006 Jan; 27(1):67-74. PubMed ID: 16388445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hand rim configuration: effects on physical strain and technique in unimpaired subjects?
    van der Woude LH; Formanoy M; de Groot S
    Med Eng Phys; 2003 Nov; 25(9):765-74. PubMed ID: 14519349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wheelchair racing: effects of rim diameter and speed on physiology and technique.
    van der Woude LH; Veeger HE; Rozendal RH; van Ingen Schenau GJ; Rooth F; van Nierop P
    Med Sci Sports Exerc; 1988 Oct; 20(5):492-500. PubMed ID: 3193866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP; Fowler N; van der Woude L; Goosey-Tolfrey VL
    Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.
    Gauthier C; Grangeon M; Ananos L; Brosseau R; Gagnon DH
    Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological evaluation of a newly designed lever mechanism for wheelchairs.
    van der Woude LH; Veeger HE; de Boer Y; Rozendal RH
    J Med Eng Technol; 1993; 17(6):232-40. PubMed ID: 8169940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.
    Vegter RJ; de Groot S; Lamoth CJ; Veeger DH; van der Woude LH
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):104-13. PubMed ID: 24122567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seat height in handrim wheelchair propulsion.
    van der Woude LH; Veeger DJ; Rozendal RH; Sargeant TJ
    J Rehabil Res Dev; 1989; 26(4):31-50. PubMed ID: 2600867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.