BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27315426)

  • 1. Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia.
    Wilson JL; Dalin S; Gosline S; Hemann M; Fraenkel E; Lauffenburger DA
    Integr Biol (Camb); 2016 Jul; 8(7):761-74. PubMed ID: 27315426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide loss-of-function genetic screening identifies opioid receptor μ1 as a key regulator of L-asparaginase resistance in pediatric acute lymphoblastic leukemia.
    Kang SM; Rosales JL; Meier-Stephenson V; Kim S; Lee KY; Narendran A
    Oncogene; 2017 Oct; 36(42):5910-5913. PubMed ID: 28650467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia.
    Mousavian Z; Nowzari-Dalini A; Stam RW; Rahmatallah Y; Masoudi-Nejad A
    Cell Oncol (Dordr); 2017 Feb; 40(1):33-45. PubMed ID: 27798768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High content screening in neurodegenerative diseases.
    Jain S; van Kesteren RE; Heutink P
    J Vis Exp; 2012 Jan; (59):e3452. PubMed ID: 22257990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic analysis of RNAi reports identifies dismal commonality at gene-level and reveals an unprecedented enrichment in pooled shRNA screens.
    Bhinder B; Djaballah H
    Comb Chem High Throughput Screen; 2013 Nov; 16(9):665-81. PubMed ID: 23848309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of key genes affecting disease free survival time of pediatric acute lymphoblastic leukemia based on bioinformatic analysis.
    Gao HY; Luo XG; Chen X; Wang JH
    Blood Cells Mol Dis; 2015 Jan; 54(1):38-43. PubMed ID: 25172542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering Seed Sequence Based Off-Target Effects in a Large-Scale RNAi Reporter Screen for E-Cadherin Expression.
    Adams R; Nicke B; Pohlenz HD; Sohler F
    PLoS One; 2015; 10(9):e0137640. PubMed ID: 26361354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrayed shRNA Screening to Identify Suppressors of Anchorage-Independent Growth.
    Eskiocak U
    Methods Mol Biol; 2019; 1907():115-123. PubMed ID: 30542995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Median absolute deviation to improve hit selection for genome-scale RNAi screens.
    Chung N; Zhang XD; Kreamer A; Locco L; Kuan PF; Bartz S; Linsley PS; Ferrer M; Strulovici B
    J Biomol Screen; 2008 Feb; 13(2):149-58. PubMed ID: 18216396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An arrayed genome-scale lentiviral-enabled short hairpin RNA screen identifies lethal and rescuer gene candidates.
    Bhinder B; Antczak C; Ramirez CN; Shum D; Liu-Sullivan N; Radu C; Frattini MG; Djaballah H
    Assay Drug Dev Technol; 2013 Apr; 11(3):173-90. PubMed ID: 23198867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge based identification of essential signaling from genome-scale siRNA experiments.
    Bankhead A; Sach I; Ni C; LeMeur N; Kruger M; Ferrer M; Gentleman R; Rohl C
    BMC Syst Biol; 2009 Aug; 3():80. PubMed ID: 19653913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression.
    Fuka G; Kauer M; Kofler R; Haas OA; Panzer-Grümayer R
    PLoS One; 2011; 6(10):e26348. PubMed ID: 22028862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PPARalpha siRNA-treated expression profiles uncover the causal sufficiency network for compound-induced liver hypertrophy.
    Dai X; De Souza AT; Dai H; Lewis DL; Lee CK; Spencer AG; Herweijer H; Hagstrom JE; Linsley PS; Bassett DE; Ulrich RG; He YD
    PLoS Comput Biol; 2007 Mar; 3(3):e30. PubMed ID: 17335344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia.
    Lin XC; Liu XG; Zhang YM; Li N; Yang ZG; Fu WY; Lan LB; Zhang HT; Dai Y
    Int J Oncol; 2017 Feb; 50(2):671-683. PubMed ID: 28101583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multivariate Computational Method to Analyze High-Content RNAi Screening Data.
    Rameseder J; Krismer K; Dayma Y; Ehrenberger T; Hwang MK; Airoldi EM; Floyd SR; Yaffe MB
    J Biomol Screen; 2015 Sep; 20(8):985-97. PubMed ID: 25918037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers.
    Dunwell T; Hesson L; Rauch TA; Wang L; Clark RE; Dallol A; Gentle D; Catchpoole D; Maher ER; Pfeifer GP; Latif F
    Mol Cancer; 2010 Feb; 9():44. PubMed ID: 20184741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focused CRISPR-Cas9 genetic screening reveals USO1 as a vulnerability in B-cell acute lymphoblastic leukemia.
    Jaiswal AK; Truong H; Tran TM; Lin TL; Casero D; Alberti MO; Rao DS
    Sci Rep; 2021 Jun; 11(1):13158. PubMed ID: 34162911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative genomic and functional profiling of the pancreatic cancer genome.
    Shain AH; Salari K; Giacomini CP; Pollack JR
    BMC Genomics; 2013 Sep; 14():624. PubMed ID: 24041470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of off-target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-induced apoptosis.
    Sudbery I; Enright AJ; Fraser AG; Dunham I
    BMC Genomics; 2010 Mar; 11():175. PubMed ID: 20230625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
    Hu YS; Xin J; Hu Y; Zhang L; Wang J
    Alzheimers Res Ther; 2017 Apr; 9(1):29. PubMed ID: 28446202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.