BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 2731543)

  • 1. Localization of adriamycin in model and natural membranes. Influence of lipid molecular packing.
    Dupou-Cézanne L; Sautereau AM; Tocanne JF
    Eur J Biochem; 1989 May; 181(3):695-702. PubMed ID: 2731543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation of phospholipid bilayers by DDT.
    Chefurka W; Chatelier RC; Sawyer WH
    Biochim Biophys Acta; 1987 Jan; 896(2):181-6. PubMed ID: 3801467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of adriamycin with small unilamellar vesicle liposomes. A fluorescence study.
    Karczmar GS; Tritton TR
    Biochim Biophys Acta; 1979 Nov; 557(2):306-19. PubMed ID: 583025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondrial membranes.
    Nicolay K; van der Neut R; Fok JJ; de Kruijff B
    Biochim Biophys Acta; 1985 Sep; 819(1):55-65. PubMed ID: 4041451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of highly purified melittin into phosphatidylcholine bilayer vesicles.
    Schulze J; Mischeck U; Wigand S; Galla HJ
    Biochim Biophys Acta; 1987 Jul; 901(1):101-11. PubMed ID: 3036227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of anilinonaphtyl labeled spectrin with fatty acids and phospholipids: a fluorescence study.
    Bonnet D; Begard E
    Biochem Biophys Res Commun; 1984 Apr; 120(2):344-50. PubMed ID: 6732762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid specific penetration of melittin into phospholipid model membranes.
    Batenburg AM; Hibbeln JC; de Kruijff B
    Biochim Biophys Acta; 1987 Sep; 903(1):155-65. PubMed ID: 3651450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucocerebroside transfer between phosphatidylcholine bilayers.
    Correa-Freire MC; Barenholz Y; Thompson TE
    Biochemistry; 1982 Mar; 21(6):1244-8. PubMed ID: 7074080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the lateral motion of extrinsic probes and anthracene-labelled constitutive phospholipids in the plasma membrane of Chinese hamster ovary cells.
    Dupou L; Lopez A; Tocanne JF
    Eur J Biochem; 1988 Feb; 171(3):669-74. PubMed ID: 3345753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer.
    Wolf DE; Winiski AP; Ting AE; Bocian KM; Pagano RE
    Biochemistry; 1992 Mar; 31(11):2865-73. PubMed ID: 1550813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL.
    Powl AM; East JM; Lee AG
    Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.
    Barenholz Y; Cohen T; Korenstein R; Ottolenghi M
    Biophys J; 1991 Jul; 60(1):110-24. PubMed ID: 1883931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers.
    Kamp F; Hamilton JA; Kamp F; Westerhoff HV; Hamilton JA
    Biochemistry; 1993 Oct; 32(41):11074-86. PubMed ID: 8218171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxicity of bovine α-lactalbumin: oleic acid complexes correlates with the disruption of lipid membranes.
    Wen H; Glomm WR; Halskau O
    Biochim Biophys Acta; 2013 Nov; 1828(11):2691-9. PubMed ID: 23916586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes.
    Bobone S; Hilsch M; Storm J; Dunsing V; Herrmann A; Chiantia S
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28356535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of resonance energy transfer to monitor membrane fusion.
    Struck DK; Hoekstra D; Pagano RE
    Biochemistry; 1981 Jul; 20(14):4093-9. PubMed ID: 7284312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adipocyte fatty acid-binding protein: interaction with phospholipid membranes and thermal stability studied by FTIR spectroscopy.
    Gericke A; Smith ER; Moore DJ; Mendelsohn R; Storch J
    Biochemistry; 1997 Jul; 36(27):8311-7. PubMed ID: 9204877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.