These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 27315517)
1. Direct quantification of transendothelial electrical resistance in organs-on-chips. van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and Validation of an Organ-on-chip System with Integrated Electrodes to Directly Quantify Transendothelial Electrical Resistance. van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994800 [TBL] [Abstract][Full Text] [Related]
3. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
4. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Maoz BM; Herland A; Henry OYF; Leineweber WD; Yadid M; Doyle J; Mannix R; Kujala VJ; FitzGerald EA; Parker KK; Ingber DE Lab Chip; 2017 Jun; 17(13):2294-2302. PubMed ID: 28608907 [TBL] [Abstract][Full Text] [Related]
5. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Griep LM; Wolbers F; de Wagenaar B; ter Braak PM; Weksler BB; Romero IA; Couraud PO; Vermes I; van der Meer AD; van den Berg A Biomed Microdevices; 2013 Feb; 15(1):145-50. PubMed ID: 22955726 [TBL] [Abstract][Full Text] [Related]
6. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Odijk M; van der Meer AD; Levner D; Kim HJ; van der Helm MW; Segerink LI; Frimat JP; Hamilton GA; Ingber DE; van den Berg A Lab Chip; 2015 Feb; 15(3):745-52. PubMed ID: 25427650 [TBL] [Abstract][Full Text] [Related]
7. Advances in TEER measurements of biological barriers in microphysiological systems. Nazari H; Shrestha J; Naei VY; Bazaz SR; Sabbagh M; Thiery JP; Warkiani ME Biosens Bioelectron; 2023 Aug; 234():115355. PubMed ID: 37159988 [TBL] [Abstract][Full Text] [Related]
10. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. Bossink EGBM; Zakharova M; de Bruijn DS; Odijk M; Segerink LI Lab Chip; 2021 May; 21(10):2040-2049. PubMed ID: 33861228 [TBL] [Abstract][Full Text] [Related]
11. A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood-retinal barrier. Yeste J; García-Ramírez M; Illa X; Guimerà A; Hernández C; Simó R; Villa R Lab Chip; 2017 Dec; 18(1):95-105. PubMed ID: 29168876 [TBL] [Abstract][Full Text] [Related]
12. Rapid integration of screen-printed electrodes into thermoplastic organ-on-a-chip devices for real-time monitoring of trans-endothelial electrical resistance. Kawakita S; Li S; Nguyen HT; Maity S; Haghniaz R; Bahari J; Yu N; Mandal K; Bandaru P; Mou L; Ermis M; Khalil E; Khosravi S; Peirsman A; Nasiri R; Adachi A; Nakayama A; Bell R; Zhu Y; Jucaud V; Dokmeci MR; Khademhosseini A Biomed Microdevices; 2023 Sep; 25(4):37. PubMed ID: 37740819 [TBL] [Abstract][Full Text] [Related]
13. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Henry OYF; Villenave R; Cronce MJ; Leineweber WD; Benz MA; Ingber DE Lab Chip; 2017 Jun; 17(13):2264-2271. PubMed ID: 28598479 [TBL] [Abstract][Full Text] [Related]
14. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. van der Helm MW; Henry OYF; Bein A; Hamkins-Indik T; Cronce MJ; Leineweber WD; Odijk M; van der Meer AD; Eijkel JCT; Ingber DE; van den Berg A; Segerink LI Lab Chip; 2019 Jan; 19(3):452-463. PubMed ID: 30632575 [TBL] [Abstract][Full Text] [Related]
15. Innovative electrode and chip designs for transendothelial electrical resistance measurements in organs-on-chips. Holzreuter MA; Segerink LI Lab Chip; 2024 Feb; 24(5):1121-1134. PubMed ID: 38165817 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity and Validation of Porous Membrane Electrical Cell Substrate Impedance Spectroscopy (PM-ECIS) for Measuring Endothelial Barrier Properties. Ugodnikov A; Chebotarev O; Persson H; Simmons CA ACS Biomater Sci Eng; 2024 Aug; 10(8):5327-5335. PubMed ID: 38943620 [TBL] [Abstract][Full Text] [Related]
17. Real-time acquisition of transendothelial electrical resistance in an all-human, Maherally Z; Fillmore HL; Tan SL; Tan SF; Jassam SA; Quack FI; Hatherell KE; Pilkington GJ FASEB J; 2018 Jan; 32(1):168-182. PubMed ID: 28883042 [TBL] [Abstract][Full Text] [Related]
18. In vitro models of the blood-brain barrier. Czupalla CJ; Liebner S; Devraj K Methods Mol Biol; 2014; 1135():415-37. PubMed ID: 24510883 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of two-layered channel system with embedded electrodes to measure resistance across epithelial and endothelial barriers. Douville NJ; Tung YC; Li R; Wang JD; El-Sayed ME; Takayama S Anal Chem; 2010 Mar; 82(6):2505-11. PubMed ID: 20178370 [TBL] [Abstract][Full Text] [Related]