BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27315668)

  • 1. Lumbar spine finite element model for healthy subjects: development and validation.
    Xu M; Yang J; Lieberman IH; Haddas R
    Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):1-15. PubMed ID: 27315668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together.
    Dreischarf M; Zander T; Shirazi-Adl A; Puttlitz CM; Adam CJ; Chen CS; Goel VK; Kiapour A; Kim YH; Labus KM; Little JP; Park WM; Wang YH; Wilke HJ; Rohlmann A; Schmidt H
    J Biomech; 2014 Jun; 47(8):1757-66. PubMed ID: 24767702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine.
    Ayturk UM; Puttlitz CM
    Comput Methods Biomech Biomed Engin; 2011 Aug; 14(8):695-705. PubMed ID: 21229413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.
    Campbell JQ; Coombs DJ; Rao M; Rullkoetter PJ; Petrella AJ
    J Biomech; 2016 Sep; 49(13):2669-2676. PubMed ID: 27291694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image driven subject-specific finite element models of spinal biomechanics.
    Zanjani-Pour S; Winlove CP; Smith CW; Meakin JR
    J Biomech; 2016 Apr; 49(6):919-925. PubMed ID: 26924661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study.
    Naserkhaki S; Jaremko JL; El-Rich M
    J Biomech; 2016 Sep; 49(13):2909-2917. PubMed ID: 27448498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis.
    Guan Y; Yoganandan N; Maiman DJ; Pintar FA
    J Spinal Disord Tech; 2008 Jun; 21(4):299-304. PubMed ID: 18525492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material properties of human lumbar intervertebral discs across strain rates.
    Newell N; Carpanen D; Grigoriadis G; Little JP; Masouros SD
    Spine J; 2019 Dec; 19(12):2013-2024. PubMed ID: 31326631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Finite element modeling of lumbar spine and study on its biodynamics].
    Guo L; Liu X; Chen W; Mu E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1084-8. PubMed ID: 18027702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.
    Kim H; Lim DH; Oh HJ; Lee KY; Lee SJ
    Biomed Mater; 2011 Oct; 6(5):055005. PubMed ID: 21849724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics].
    Zhang Z; Li Y; Liao Z; Liu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1196-202. PubMed ID: 29715419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.
    Woldtvedt DJ; Womack W; Gadomski BC; Schuldt D; Puttlitz CM
    J Biomech Eng; 2011 Jun; 133(6):061009. PubMed ID: 21744929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].
    Zhu Z; Liu C; Wang J; Wang K; Huang Z; Wang W; Liu H
    Zhonghua Yi Xue Za Zhi; 2014 Oct; 94(37):2919-22. PubMed ID: 25549645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation.
    Ghezelbash F; Shirazi-Adl A; Arjmand N; El-Ouaaid Z; Plamondon A
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1699-1712. PubMed ID: 27169402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FEBio finite element models of the human lumbar spine.
    Finley SM; Brodke DS; Spina NT; DeDen CA; Ellis BJ
    Comput Methods Biomech Biomed Engin; 2018 May; 21(6):444-452. PubMed ID: 30010415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical analysis of the thoracolumbar spine under physiological loadings: Experimental motion data corridors for validation of finite element models.
    Couvertier M; Germaneau A; Saget M; Dupré JC; Doumalin P; Brémand F; Hesser F; Brèque C; Roulaud M; Monlezun O; Vendeuvre T; Rigoard P
    Proc Inst Mech Eng H; 2017 Oct; 231(10):975-981. PubMed ID: 28707505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated finite element modeling of the lumbar spine: Using a statistical shape model to generate a virtual population of models.
    Campbell JQ; Petrella AJ
    J Biomech; 2016 Sep; 49(13):2593-2599. PubMed ID: 27270207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.