These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 27315923)

  • 1. Cysteine Uptake for Accumulation of Glutathione by the Cyanobacterium Synechocystis strain PCC 6803.
    Suginaka K; Yamamoto K; Ashiida H; Kono Y; Saw Y; Shibata H
    Biosci Biotechnol Biochem; 1998; 62(3):424-8. PubMed ID: 27315923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells.
    Hayes D; Wiessner M; Rauen T; McBean GJ
    Neurochem Int; 2005 Jun; 46(8):585-94. PubMed ID: 15863236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine transport in rat liver canalicular membrane vesicles: potential reabsorption mechanisms for biliary metabolites of glutathione and its S-conjugates.
    Simmons TW; Anders MW; Ballatori N
    J Pharmacol Exp Ther; 1992 Sep; 262(3):1182-8. PubMed ID: 1527723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and efflux of methylmercury in vitro: comparison of transport mechanisms in C6, B35 and RBE4 cells.
    Heggland I; Kaur P; Syversen T
    Toxicol In Vitro; 2009 Sep; 23(6):1020-7. PubMed ID: 19540910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase.
    Lall MM; Ferrell J; Nagar S; Fleisher LN; McGahan MC
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):310-9. PubMed ID: 18172108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human organic anion transporter OAT1 is not responsible for glutathione transport but mediates transport of glutamate derivatives.
    Hagos Y; Burckhardt G; Burckhardt BC
    Am J Physiol Renal Physiol; 2013 Feb; 304(4):F403-9. PubMed ID: 23255614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell.
    Rosenberg R
    Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycine accumulation is toxic for the cyanobacterium Synechocystis sp. strain PCC 6803, but can be compensated by supplementation with magnesium ions.
    Eisenhut M; Bauwe H; Hagemann M
    FEMS Microbiol Lett; 2007 Dec; 277(2):232-7. PubMed ID: 18031345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120.
    Herrero A; Flores E
    J Biol Chem; 1990 Mar; 265(7):3931-5. PubMed ID: 2105956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the uptake of L-cysteine and L-cystine in the renal proximal tubule.
    Riahi-Esfahani S; Jessen H; Røigaard H
    Amino Acids; 1995 Sep; 8(3):247-64. PubMed ID: 24186402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-dependent uptake of glutamate by novel ApGltS enhanced growth under salt stress of halotolerant cyanobacterium Aphanothece halophytica.
    Boonburapong B; Laloknam S; Yamada N; Incharoensakdi A; Takabe T
    Biosci Biotechnol Biochem; 2012; 76(9):1702-7. PubMed ID: 22972333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid transporters involved in luminal transport of mercuric conjugates of cysteine in rabbit proximal tubule.
    Cannon VT; Zalups RK; Barfuss DW
    J Pharmacol Exp Ther; 2001 Aug; 298(2):780-9. PubMed ID: 11454942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synechococcus elongatus PCC 7942 is more tolerant to chromate as compared to Synechocystis sp. PCC 6803.
    Gupta A; Bhagwat SG; Sainis JK
    Biometals; 2013 Apr; 26(2):309-19. PubMed ID: 23430150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylmercury-thiol uptake into cultured brain capillary endothelial cells on amino acid system L.
    Mokrzan EM; Kerper LE; Ballatori N; Clarkson TW
    J Pharmacol Exp Ther; 1995 Mar; 272(3):1277-84. PubMed ID: 7891344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystine and dibasic amino acid uptake by opossum kidney cells.
    States B; Segal S
    J Cell Physiol; 1990 Jun; 143(3):555-62. PubMed ID: 2358474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-independent transporters, LAT-2 and b0,+, exchange L-DOPA with neutral and basic amino acids in two clonal renal cell lines.
    Gomes P; Soares-da-Silva P
    J Membr Biol; 2002 Mar; 186(2):63-80. PubMed ID: 11944084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological characterization of glutamate Na+-independent transport in retinal cell cultures: implications in the glutathione metabolism.
    Oliveira KR; Herculano AM; Crespo-López ME; do Nascimento JL
    Neurochem Int; 2010 Jan; 56(1):59-66. PubMed ID: 19751785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium.
    Li B; Li L; Donaldson PJ; Lim JC
    Exp Eye Res; 2010 Feb; 90(2):300-7. PubMed ID: 19941852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High- and low-affinity transport of L-leucine and L-DOPA by the hetero amino acid exchangers LAT1 and LAT2 in LLC-PK1 renal cells.
    Soares-da-Silva P; Serrão MP
    Am J Physiol Renal Physiol; 2004 Aug; 287(2):F252-61. PubMed ID: 15271688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine.
    Ishii T; Sugita Y; Bannai S
    J Cell Physiol; 1987 Nov; 133(2):330-6. PubMed ID: 3680392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.