BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2731637)

  • 1. The muscular dysgenesis mutation in mice leads to arrest of the genetic program for muscle differentiation.
    Chaudhari N; Beam KG
    Dev Biol; 1989 Jun; 133(2):456-67. PubMed ID: 2731637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis.
    Knudson CM; Chaudhari N; Sharp AH; Powell JA; Beam KG; Campbell KP
    J Biol Chem; 1989 Jan; 264(3):1345-8. PubMed ID: 2536362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic model for the study of abnormal nerve-muscle interactions at the level of excitation-contraction coupling: the mutation muscular dysgenesis.
    Pinçon-Raymond M; García L; Romey G; Houenou L; Lazdunski M; Rieger F
    J Physiol (Paris); 1990; 84(1):82-7. PubMed ID: 2193149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscular dysgenesis in mice: a model system for studying excitation-contraction coupling.
    Adams BA; Beam KG
    FASEB J; 1990 Jul; 4(10):2809-16. PubMed ID: 2165014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice.
    Chaudhari N
    J Biol Chem; 1992 Dec; 267(36):25636-9. PubMed ID: 1281468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.
    Brillantes AM; Bezprozvannaya S; Marks AR
    Circ Res; 1994 Sep; 75(3):503-10. PubMed ID: 8062423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development.
    Arai M; Otsu K; MacLennan DH; Periasamy M
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C614-20. PubMed ID: 1372478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ryanodine receptor/junctional channel complex is regulated by growth factors in a myogenic cell line.
    Marks AR; Taubman MB; Saito A; Dai Y; Fleischer S
    J Cell Biol; 1991 Jul; 114(2):303-12. PubMed ID: 1649198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons.
    Rieger F; Bournaud R; Shimahara T; Garcia L; Pinçon-Raymond M; Romey G; Lazdunski M
    Nature; 1987 Dec 10-16; 330(6148):563-6. PubMed ID: 2446145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of the mutation muscular dysgenesis on the mitochondrial metabolism of fibroblasts in vitro].
    Aymard C; Malgat M; Mazat JP; Koenig J
    C R Acad Sci III; 1993; 316(5):529-32. PubMed ID: 8221238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of normal ultrastructure after expression of the alpha 1 subunit of the L-type Ca2+ channel in dysgenic myotubes.
    Seigneurin-Venin S; Song M; Pinçon-Raymond M; Rieger F; Garcia L
    FEBS Lett; 1994 Apr; 342(2):129-34. PubMed ID: 8143864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of contractile protein genes.
    Schwartz RJ; Stone EM
    Cell Muscle Motil; 1983; 3():195-257. PubMed ID: 6200200
    [No Abstract]   [Full Text] [Related]  

  • 13. Temporal resolution and sequential expression of muscle-specific genes revealed by in situ hybridization.
    Lawrence JB; Taneja K; Singer RH
    Dev Biol; 1989 May; 133(1):235-46. PubMed ID: 2651181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expression of sarcomeric muscle-specific contractile protein genes in BC3H1 cells: BC3H1 cells resemble skeletal myoblasts that are defective for commitment to terminal differentiation.
    Taubman MB; Smith CW; Izumo S; Grant JW; Endo T; Andreadis A; Nadal-Ginard B
    J Cell Biol; 1989 May; 108(5):1799-806. PubMed ID: 2715180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A developmental study of the abnormal expression of alpha-cardiac and alpha-skeletal actins in the striated muscle of a mutant mouse.
    Garner I; Sassoon D; Vandekerckhove J; Alonso S; Buckingham ME
    Dev Biol; 1989 Jul; 134(1):236-45. PubMed ID: 2731651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of normal function in genetically defective myotubes by spontaneous fusion with fibroblasts.
    Chaudhari N; Delay R; Beam KG
    Nature; 1989 Oct; 341(6241):445-7. PubMed ID: 2507925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinated development of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in vivo and in vitro.
    Flucher BE; Phillips JL; Powell JA; Andrews SB; Daniels MP
    Dev Biol; 1992 Apr; 150(2):266-80. PubMed ID: 1551475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ entry through acetylcholine receptor channel in dysgenic myotubes.
    Melliti K; Bournaud R; Shimahara T
    Arch Physiol Biochem; 1996; 104(1):57-61. PubMed ID: 8724881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholinesterase and nicotinic acetylcholine receptor expression diverge in muscular dysgenic mice lacking the L-type calcium channel.
    Luo ZD; Pincon-Raymond M; Taylor P
    J Neurochem; 1996 Jul; 67(1):111-8. PubMed ID: 8666981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscular dysgenesis: a model system for studying skeletal muscle development.
    Powell JA
    FASEB J; 1990 Jul; 4(10):2798-808. PubMed ID: 2197156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.