These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2731649)

  • 1. Nerve growth factor and serum differentially regulate development of the embryonic otic vesicle and cochleovestibular ganglion in vitro.
    Represa J; Bernd P
    Dev Biol; 1989 Jul; 134(1):21-9. PubMed ID: 2731649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and localization of nerve growth factor receptors in the embryonic otic vesicle and cochleovestibular ganglion.
    Bernd P; Represa J
    Dev Biol; 1989 Jul; 134(1):11-20. PubMed ID: 2543603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal pattern of nerve growth factor receptor expression in developing cochlear and vestibular ganglia in quail and mouse.
    Represa J; Van de Water TR; Bernd P
    Anat Embryol (Berl); 1991; 184(5):421-32. PubMed ID: 1660224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inositol phospho-oligosaccharide stimulates cell proliferation in the early developing inner ear.
    Varela-Nieto I; Represa J; Avila MA; Miner C; Mato JM; Giraldez F
    Dev Biol; 1991 Feb; 143(2):432-5. PubMed ID: 1991566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor beta 2 promotes the formation of the mouse cochleovestibular ganglion in organ culture.
    Okano J; Takigawa T; Seki K; Suzuki S; Shiota K; Ishibashi M
    Int J Dev Biol; 2005; 49(1):23-31. PubMed ID: 15744664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental regulation of Fos-protein during proliferative growth of the otic vesicle and its relation to differentiation induced by retinoic acid.
    León Y; Sanchez JA; Miner C; Ariza-McNaughton L; Represa JJ; Giraldez F
    Dev Biol; 1995 Jan; 167(1):75-86. PubMed ID: 7851664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of hair cells and nerve growth factor on the differentiation of neurons of the cochleovestibular ganglion].
    Represa J; Escapa J; Gil-Carcedo L
    An Otorrinolaringol Ibero Am; 1992; 19(1):13-26. PubMed ID: 1554084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronotrophic effect of developing otic vesicle on cochleo-vestibular neurons: evidence for nerve growth factor involvement.
    Lefebvre PP; Leprince P; Weber T; Rigo JM; Delree P; Moonen G
    Brain Res; 1990 Jan; 507(2):254-60. PubMed ID: 2337765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the cytoskeletal protein MAP5 and its regulation by neurotrophin 3 (NT3) in the inner ear sensory neurons.
    San José I; Vázquez E; García-Atarés N; Rodriguez S; Vega JA; Represa J
    Anat Embryol (Berl); 1997 Mar; 195(3):299-310. PubMed ID: 9084828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NGF, BDNF and NT-3 play unique roles in the in vitro development and patterning of innervation of the mammalian inner ear.
    Staecker H; Van De Water TR; Lefebvre PP; Liu W; Moghadassi M; Galinovic-Schwartz V; Malgrange B; Moonen G
    Brain Res Dev Brain Res; 1996 Mar; 92(1):49-60. PubMed ID: 8861722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mesenchyme-free culture system to elucidate the mechanism of otic vesicle morphogenesis.
    Miura T; Shiota K; Morriss-Kay G
    J Anat; 2004 Oct; 205(4):297-312. PubMed ID: 15447689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental profiling of microRNAs in the human embryonic inner ear.
    Chadly DM; Best J; Ran C; Bruska M; Woźniak W; Kempisty B; Schwartz M; LaFleur B; Kerns BJ; Kessler JA; Matsuoka AJ
    PLoS One; 2018; 13(1):e0191452. PubMed ID: 29373586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitogenic and anti-proliferative signals for neural crest cells and the neurogenic action of TGF-beta1.
    Zhang JM; Hoffmann R; Sieber-Blum M
    Dev Dyn; 1997 Mar; 208(3):375-86. PubMed ID: 9056641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual embryonic origin of the mammalian otic vesicle forming the inner ear.
    Freyer L; Aggarwal V; Morrow BE
    Development; 2011 Dec; 138(24):5403-14. PubMed ID: 22110056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trophic support of the developing cochleovestibular ganglion by its peripheral target in vitro does not depend on neuronal cell division.
    Hauger SH; Book KJ; Morest DK
    Neuroscience; 1989; 33(2):241-51. PubMed ID: 2622525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems.
    Liu M; Pereira FA; Price SD; Chu MJ; Shope C; Himes D; Eatock RA; Brownell WE; Lysakowski A; Tsai MJ
    Genes Dev; 2000 Nov; 14(22):2839-54. PubMed ID: 11090132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bombesin and other growth factors activate cell proliferation in chick embryo otic vesicles in culture.
    Represa JJ; Miner C; Barbosa E; Giraldez F
    Development; 1988 May; 103(1):87-96. PubMed ID: 3058452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture.
    Zhou XN; Van de Water TR
    Acta Otolaryngol; 1987; 104(1-2):90-8. PubMed ID: 3661166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosyl-phosphatidylinositol/inositol phosphoglycan: a signaling system for the low-affinity nerve growth factor receptor.
    Represa J; Avila MA; Miner C; Giraldez F; Romero G; Clemente R; Mato JM; Varela-Nieto I
    Proc Natl Acad Sci U S A; 1991 Sep; 88(18):8016-9. PubMed ID: 1654553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of long-term survival and neuritogenesis in vitro: cochleovestibular ganglion of the chick embryo in BDNF, NT-3, NT-4/5, and insulin.
    Sokolowski BH
    Exp Neurol; 1997 May; 145(1):1-15. PubMed ID: 9184104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.