These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 27316828)
1. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. Vega-Castro O; Contreras-Calderon J; León E; Segura A; Arias M; Pérez L; Sobral PJA J Biotechnol; 2016 Aug; 231():232-238. PubMed ID: 27316828 [TBL] [Abstract][Full Text] [Related]
2. Valorisation of Pineapple Cannery Waste as a Cost Effective Carbon Source for Poly 3-hydroxyabutyrate (P3HB) Production. Suwannasing W; Tanamool V; Singhaboot P; Kaewkannetra P Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571191 [TBL] [Abstract][Full Text] [Related]
3. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. López-Cuellar MR; Alba-Flores J; Rodríguez JN; Pérez-Guevara F Int J Biol Macromol; 2011 Jan; 48(1):74-80. PubMed ID: 20933541 [TBL] [Abstract][Full Text] [Related]
4. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. Riedel SL; Jahns S; Koenig S; Bock MC; Brigham CJ; Bader J; Stahl U J Biotechnol; 2015 Nov; 214():119-27. PubMed ID: 26428087 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis and statistical optimization of polyhydroxyalkanoate (PHA) produced by Bacillus cereus VIT-SSR1 and fabrication of biopolymer films for sustained drug release. Evangeline S; Sridharan TB Int J Biol Macromol; 2019 Aug; 135():945-958. PubMed ID: 31128180 [TBL] [Abstract][Full Text] [Related]
6. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils. Benesova P; Kucera D; Marova I; Obruca S Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326 [TBL] [Abstract][Full Text] [Related]
7. Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Roda A; Lucini L; Torchio F; Dordoni R; De Faveri DM; Lambri M Food Chem; 2017 Aug; 229():734-742. PubMed ID: 28372238 [TBL] [Abstract][Full Text] [Related]
8. [Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha]. Yan Q; Du GC; Chen J Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):497-501. PubMed ID: 15969073 [TBL] [Abstract][Full Text] [Related]
9. Modeling and optimization of biopolymer (polyhydroxyalkanoates) production from ice cream residue by novel statistical experimental design. Lee KM; Gilmore DF Appl Biochem Biotechnol; 2006 May; 133(2):113-48. PubMed ID: 16702606 [TBL] [Abstract][Full Text] [Related]
10. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Sukruansuwan V; Napathorn SC Biotechnol Biofuels; 2018; 11():202. PubMed ID: 30061924 [TBL] [Abstract][Full Text] [Related]
11. Polyhydroxyalkanoate synthesis by bacteria isolated from landfill and ETP with pomegranate peels as carbon source. Rayasam V; Chavan P; Kumar T Arch Microbiol; 2020 Dec; 202(10):2799-2808. PubMed ID: 32747997 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. Mohammed S; Behera HT; Dekebo A; Ray L Int J Biol Macromol; 2020 Aug; 156():1064-1080. PubMed ID: 31751740 [TBL] [Abstract][Full Text] [Related]
13. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator. Arumugam A; Senthamizhan SG; Ponnusami V; Sudalai S Int J Biol Macromol; 2018 Jun; 112():598-607. PubMed ID: 29408394 [TBL] [Abstract][Full Text] [Related]
14. Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials. Suwannasing W; Imai T; Kaewkannetra P Bioresour Technol; 2015 Oct; 194():67-74. PubMed ID: 26185927 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. García IL; López JA; Dorado MP; Kopsahelis N; Alexandri M; Papanikolaou S; Villar MA; Koutinas AA Bioresour Technol; 2013 Feb; 130():16-22. PubMed ID: 23280181 [TBL] [Abstract][Full Text] [Related]
16. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. Liang S; McDonald AG J Agric Food Chem; 2014 Aug; 62(33):8421-9. PubMed ID: 25093245 [TBL] [Abstract][Full Text] [Related]
17. Potato Peel Waste as an Economic Feedstock for PHA Production by Bacillus circulans. Kag S; Kumar P; Kataria R Appl Biochem Biotechnol; 2024 May; 196(5):2451-2465. PubMed ID: 37776440 [TBL] [Abstract][Full Text] [Related]
19. Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H Costa P; Basaglia M; Casella S; Kennes C; Favaro L; Carmen Veiga M Bioresour Technol; 2023 Dec; 390():129880. PubMed ID: 37852509 [TBL] [Abstract][Full Text] [Related]
20. Improved fermentation strategies in a bioreactor for enhancing poly(3-hydroxybutyrate) (PHB) production by wild type Nygaard D; Yashchuk O; Noseda DG; Araoz B; Hermida ÉB Heliyon; 2021 Jan; 7(1):e05979. PubMed ID: 33537471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]