These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 27316946)
1. Genomic selection to resistance to Stenocarpella maydis in maize lines using DArTseq markers. Dos Santos JP; Pires LP; de Castro Vasconcellos RC; Pereira GS; Von Pinho RG; Balestre M BMC Genet; 2016 Jun; 17(1):86. PubMed ID: 27316946 [TBL] [Abstract][Full Text] [Related]
2. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Naumann TA; Wicklow DT Phytopathology; 2010 Jul; 100(7):645-54. PubMed ID: 20528182 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. Adewale SA; Badu-Apraku B; Akinwale RO; Paterne AA; Gedil M; Garcia-Oliveira AL BMC Plant Biol; 2020 May; 20(1):203. PubMed ID: 32393176 [TBL] [Abstract][Full Text] [Related]
4. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. de Jong G; Pamplona AKA; Von Pinho RG; Balestre M Genomics; 2018 Sep; 110(5):291-303. PubMed ID: 29223691 [TBL] [Abstract][Full Text] [Related]
6. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Wicklow DT; Rogers KD; Dowd PF; Gloer JB Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311 [TBL] [Abstract][Full Text] [Related]
7. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Zaccaron AZ; Woloshuk CP; Bluhm BH Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703 [TBL] [Abstract][Full Text] [Related]
8. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. Lanubile A; Ferrarini A; Maschietto V; Delledonne M; Marocco A; Bellin D BMC Genomics; 2014 Aug; 15(1):710. PubMed ID: 25155950 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. Zila CT; Ogut F; Romay MC; Gardner CA; Buckler ES; Holland JB BMC Plant Biol; 2014 Dec; 14():372. PubMed ID: 25547028 [TBL] [Abstract][Full Text] [Related]
10. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
11. Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm. Chen J; Shrestha R; Ding J; Zheng H; Mu C; Wu J; Mahuku G G3 (Bethesda); 2016 Dec; 6(12):3803-3815. PubMed ID: 27742723 [TBL] [Abstract][Full Text] [Related]
13. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Gaikpa DS; Miedaner T Theor Appl Genet; 2019 Oct; 132(10):2721-2739. PubMed ID: 31440772 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
15. A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. Zila CT; Samayoa LF; Santiago R; ButrĂ³n A; Holland JB G3 (Bethesda); 2013 Nov; 3(11):2095-104. PubMed ID: 24048647 [TBL] [Abstract][Full Text] [Related]
16. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319. Song FJ; Xiao MG; Duan CX; Li HJ; Zhu ZD; Liu BT; Sun SL; Wu XF; Wang XM Mol Genet Genomics; 2015 Aug; 290(4):1543-9. PubMed ID: 25724693 [TBL] [Abstract][Full Text] [Related]
17. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. Benson JM; Poland JA; Benson BM; Stromberg EL; Nelson RJ PLoS Genet; 2015 Mar; 11(3):e1005045. PubMed ID: 25764179 [TBL] [Abstract][Full Text] [Related]
18. MicroRNAs Are Involved in Maize Immunity Against Fusarium verticillioides Ear Rot. Zhou Z; Cao Y; Li T; Wang X; Chen J; He H; Yao W; Wu J; Zhang H Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):241-255. PubMed ID: 32531477 [TBL] [Abstract][Full Text] [Related]
19. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Ma C; Ma X; Yao L; Liu Y; Du F; Yang X; Xu M Theor Appl Genet; 2017 Aug; 130(8):1723-1734. PubMed ID: 28555262 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]