BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27317001)

  • 21. Bioluminescence Resonance Energy Transfer (BRET)-Based Synthetic Sensor Platform for Drug Discovery.
    Woo J; Hong J; Dinesh-Kumar SP
    Curr Protoc Protein Sci; 2017 Apr; 88():19.30.1-19.30.12. PubMed ID: 28369669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening for Protein-Protein Interaction Inhibitors Using a Bioluminescence Resonance Energy Transfer (BRET)-Based Assay in Yeast.
    Corbel C; Sartini S; Levati E; Colas P; Maillet L; Couturier C; Montanini B; Bach S
    SLAS Discov; 2017 Jul; 22(6):751-759. PubMed ID: 28346092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studying RAS Interactions in Live Cells with BRET.
    Columbus J; Turbyville T
    Methods Mol Biol; 2024; 2797():253-260. PubMed ID: 38570465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ratiometric BRET Measurements of ATP with a Genetically-Encoded Luminescent Sensor.
    Min SH; French AR; Trull KJ; Tat K; Varney SA; Tantama M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measuring NLR Oligomerization III: Detection of NLRP3 Complex by Bioluminescence Resonance Energy Transfer.
    Martín-Sánchez F; Compan V; Pelegrín P
    Methods Mol Biol; 2016; 1417():159-68. PubMed ID: 27221488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds.
    Wang BJ; Liao YF; Tung YT; Yih LH; Hu CC; Lee H
    Toxicol Mech Methods; 2013 May; 23(4):247-54. PubMed ID: 23193992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Small Molecule-Protein Hybrid for Voltage Imaging via Quenching of Bioluminescence.
    Benlian BR; Klier PEZ; Martinez KN; Schwinn MK; Kirkland TA; Miller EW
    ACS Sens; 2021 May; 6(5):1857-1863. PubMed ID: 33723996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring Opioid Receptor Interaction in Living Cells by Bioluminescence Resonance Energy Transfer (BRET).
    Baiula M
    Methods Mol Biol; 2021; 2201():35-43. PubMed ID: 32975787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo detection of protein-protein interaction in plant cells using BRET.
    Subramanian C; Xu Y; Johnson CH; von Arnim AG
    Methods Mol Biol; 2004; 284():271-86. PubMed ID: 15173623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions.
    Machleidt T; Woodroofe CC; Schwinn MK; Méndez J; Robers MB; Zimmerman K; Otto P; Daniels DL; Kirkland TA; Wood KV
    ACS Chem Biol; 2015 Aug; 10(8):1797-804. PubMed ID: 26006698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioluminescence Resonance Energy Transfer Approaches to Discover Bias in GPCR Signaling.
    Johnstone EK; Pfleger KD
    Methods Mol Biol; 2015; 1335():191-204. PubMed ID: 26260602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasensitive detection of cellular protein interactions using bioluminescence resonance energy transfer quantum dot-based nanoprobes.
    Quiñones GA; Miller SC; Bhattacharyya S; Sobek D; Stephan JP
    J Cell Biochem; 2012 Jul; 113(7):2397-405. PubMed ID: 22573556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors.
    Pfleger KD; Eidne KA
    Pituitary; 2003; 6(3):141-51. PubMed ID: 14974443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals.
    De A; Ray P; Loening AM; Gambhir SS
    FASEB J; 2009 Aug; 23(8):2702-9. PubMed ID: 19351700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer.
    Kaku T; Sugiura K; Entani T; Osabe K; Nagai T
    Sci Rep; 2021 Jul; 11(1):14994. PubMed ID: 34294849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multimeric Purinoceptor Detection by Bioluminescence Resonance Energy Transfer.
    Compan V; Rassendren F
    Methods Mol Biol; 2020; 2041():155-162. PubMed ID: 31646487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring NLR Oligomerization III: Detection of NLRP3 and NLRC4 Complex by Bioluminescence Resonance Energy Transfer.
    Martín-Sánchez F; Peñín-Franch A; Angosto-Bazarra D; Tapia-Abellán A; Compan V; Pelegrín P
    Methods Mol Biol; 2023; 2696():93-103. PubMed ID: 37578717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand-activated BRET9 imaging for measuring protein-protein interactions in living mice.
    Bae Kim S; Fujii R; Natarajan A; Massoud TF; Paulmurugan R
    Chem Commun (Camb); 2019 Dec; 56(2):281-284. PubMed ID: 31807738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum dot-NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo.
    Kamkaew A; Sun H; England CG; Cheng L; Liu Z; Cai W
    Chem Commun (Camb); 2016 May; 52(43):6997-7000. PubMed ID: 27157466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.