These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27317136)

  • 1. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario.
    Rafael S; Martins H; Sá E; Carvalho D; Borrego C; Lopes M
    Sci Total Environ; 2016 Oct; 566-567():1500-1510. PubMed ID: 27317136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal).
    Rafael S; Martins H; Marta-Almeida M; Sá E; Coelho S; Rocha A; Borrego C; Lopes M
    Environ Res; 2017 May; 155():321-334. PubMed ID: 28264781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the cooling effectiveness of operationalisable urban surface combination scenarios for summer heat mitigation.
    Herath P; Thatcher M; Jin H; Bai X
    Sci Total Environ; 2023 May; 874():162476. PubMed ID: 36858236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of urban geometry on mean radiant temperature under future climate change: a study of three European cities.
    Lau KK; Lindberg F; Rayner D; Thorsson S
    Int J Biometeorol; 2015 Jul; 59(7):799-814. PubMed ID: 25218492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristics of surface energy fluxes over a sparse shrubland ecosystem in the farming-pastoral zone of the Loess Plateau, Northwest China].
    Gong TT; Lei HM; Jiao Y; Yang HB; Yang DW
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1625-33. PubMed ID: 26572012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of future urban expansion on summer climate and heat-related human health in eastern China.
    Cao Q; Yu D; Georgescu M; Wu J; Wang W
    Environ Int; 2018 Mar; 112():134-146. PubMed ID: 29272777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of surface type on the absorbed radiation by a human under hot, dry conditions.
    Hardin AW; Vanos JK
    Int J Biometeorol; 2018 Jan; 62(1):43-56. PubMed ID: 28477222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways for adapting tourism to climate change in an urban destination - Evidences based on thermal conditions for the Porto Metropolitan Area (Portugal).
    Lopes HS; Remoaldo PC; Ribeiro V; Martín-Vide J
    J Environ Manage; 2022 Aug; 315():115161. PubMed ID: 35526395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements and simulations of energy fluxes over a high-rise and compact urban area in Hong Kong.
    Cui W; Chui TFM
    Sci Total Environ; 2021 Apr; 765():142718. PubMed ID: 33082045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data.
    Kato S; Yamaguchi Y; Liu CC; Sun CY
    Sensors (Basel); 2008 Sep; 8(9):6026-6044. PubMed ID: 27873856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilising green and bluespace to mitigate urban heat island intensity.
    Gunawardena KR; Wells MJ; Kershaw T
    Sci Total Environ; 2017 Apr; 584-585():1040-1055. PubMed ID: 28161043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urban energy exchanges monitoring from space.
    Chrysoulakis N; Grimmond S; Feigenwinter C; Lindberg F; Gastellu-Etchegorry JP; Marconcini M; Mitraka Z; Stagakis S; Crawford B; Olofson F; Landier L; Morrison W; Parlow E
    Sci Rep; 2018 Jul; 8(1):11498. PubMed ID: 30065389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of greenery enhancements for the resilience to heat waves: A comparison of analysis performed through mesoscale (WRF) and microscale (Envi-met) modeling.
    Berardi U; Jandaghian Z; Graham J
    Sci Total Environ; 2020 Dec; 747():141300. PubMed ID: 32791415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data.
    Nedbal V; Brom J
    Sci Total Environ; 2018 Aug; 633():658-667. PubMed ID: 29597163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing future resilience in urban drainage system: Green versus grey infrastructure.
    Dong X; Guo H; Zeng S
    Water Res; 2017 Nov; 124():280-289. PubMed ID: 28772140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5.
    Oleson KW; Anderson GB; Jones B; McGinnis SA; Sanderson B
    Clim Change; 2018 Feb; 146(3-4):377-392. PubMed ID: 29520121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM.
    Li H; Zhou Y; Wang X; Zhou X; Zhang H; Sodoudi S
    Sci Total Environ; 2019 Feb; 650(Pt 2):3110-3119. PubMed ID: 30373088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy flux parametrization as an opportunity to get Urban Heat Island insights: The case of Athens, Greece (Thermopolis 2009 Campaign).
    Loupa G; Rapsomanikis S; Trepekli A; Kourtidis K
    Sci Total Environ; 2016 Jan; 542(Pt A):136-43. PubMed ID: 26520258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is Sensible Heat Flux Useful for the Assessment of Thermal Vulnerability in Seoul (Korea)?
    Kwon YJ; Lee DK; Kwon YH
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32033178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive effects of vegetation: urban heat island and green roofs.
    Susca T; Gaffin SR; Dell'osso GR
    Environ Pollut; 2011; 159(8-9):2119-26. PubMed ID: 21481997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.