BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27317322)

  • 1. Predicting the effectiveness of depth-based technologies to prevent salmon lice infection using a dispersal model.
    Samsing F; Johnsen I; Stien LH; Oppedal F; Albretsen J; Asplin L; Dempster T
    Prev Vet Med; 2016 Jul; 129():48-57. PubMed ID: 27317322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'Snorkel' lice barrier technology reduced two co- occurring parasites, the salmon louse (Lepeophtheirus salmonis) and the amoebic gill disease causing agent (Neoparamoeba perurans), in commercial salmon sea-cages.
    Wright DW; Stien LH; Dempster T; Vågseth T; Nola V; Fosseidengen JE; Oppedal F
    Prev Vet Med; 2017 May; 140():97-105. PubMed ID: 28460755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms.
    Kristoffersen AB; Jimenez D; Viljugrein H; Grøntvedt R; Stien A; Jansen PA
    Epidemics; 2014 Dec; 9():31-9. PubMed ID: 25480132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wild salmonids and sea louse infestations on the west coast of Scotland: sources of infection and implications for the management of marine salmon farms.
    Butler JR
    Pest Manag Sci; 2002 Jun; 58(6):595-608; discussion 622-9. PubMed ID: 12138626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of salmon louse production in Norway: effects of increasing salmon production and public management measures.
    Heuch PA; Mo TA
    Dis Aquat Organ; 2001 Jun; 45(2):145-52. PubMed ID: 11463102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parasitic sea louse infestations on wild sea trout: separating the roles of fish farms and temperature.
    Vollset KW; Qviller L; Skår B; Barlaup BT; Dohoo I
    Parasit Vectors; 2018 Nov; 11(1):609. PubMed ID: 30497499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sea lice infestation levels decrease with deeper 'snorkel' barriers in Atlantic salmon sea-cages.
    Oppedal F; Samsing F; Dempster T; Wright DW; Bui S; Stien LH
    Pest Manag Sci; 2017 Sep; 73(9):1935-1943. PubMed ID: 28247541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere.
    Costello MJ
    Proc Biol Sci; 2009 Oct; 276(1672):3385-94. PubMed ID: 19586950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal and vertical distribution of sea lice larvae (Lepeophtheirus salmonis) in and around salmon farms in the Bay of Fundy, Canada.
    Nelson EJ; Robinson SMC; Feindel N; Sterling A; Byrne A; Pee Ang K
    J Fish Dis; 2018 Jun; 41(6):885-899. PubMed ID: 29159846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parasites under pressure: salmon lice have the capacity to adapt to depth-based preventions in aquaculture.
    Coates A; Phillips BL; Oppedal F; Bui S; Overton K; Dempster T
    Int J Parasitol; 2020 Sep; 50(10-11):865-872. PubMed ID: 32652129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A partly stage-structured model for the abundance of salmon lice in salmonid farms.
    Aldrin M; Jansen PA; Stryhn H
    Epidemics; 2019 Mar; 26():9-22. PubMed ID: 30172577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salmon lice--impact on wild salmonids and salmon aquaculture.
    Torrissen O; Jones S; Asche F; Guttormsen A; Skilbrei OT; Nilsen F; Horsberg TE; Jackson D
    J Fish Dis; 2013 Mar; 36(3):171-94. PubMed ID: 23311858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.
    Price MH; Proboszcz SL; Routledge RD; Gottesfeld AS; Orr C; Reynolds JD
    PLoS One; 2011 Feb; 6(2):e16851. PubMed ID: 21347456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space-time modelling of the spread of salmon lice between and within Norwegian marine salmon farms.
    Aldrin M; Storvik B; Kristoffersen AB; Jansen PA
    PLoS One; 2013; 8(5):e64039. PubMed ID: 23700455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission dynamics of parasitic sea lice from farm to wild salmon.
    Krkosek M; Lewis MA; Volpe JP
    Proc Biol Sci; 2005 Apr; 272(1564):689-96. PubMed ID: 15870031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea lice infestations on farmed Atlantic salmon in Scotland and the use of ectoparasitic treatments.
    Revie CW; Gettinby G; Treasurer JW; Grant AN; Reid SW
    Vet Rec; 2002 Dec 21-28; 151(25):753-7. PubMed ID: 12521246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism (Phe362Tyr mutation) behind resistance in Lepeophtheirus salmonis pre-dates organophosphate use in salmon farming.
    Kaur K; Besnier F; Glover KA; Nilsen F; Aspehaug VT; Fjørtoft HB; Horsberg TE
    Sci Rep; 2017 Sep; 7(1):12349. PubMed ID: 28955050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying 'firebreaks' to fragment dispersal networks of a marine parasite.
    Samsing F; Johnsen I; Treml EA; Dempster T
    Int J Parasitol; 2019 Mar; 49(3-4):277-286. PubMed ID: 30660636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecology of sea lice parasitic on farmed and wild fish.
    Costello MJ
    Trends Parasitol; 2006 Oct; 22(10):475-83. PubMed ID: 16920027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of reduced effectiveness of salmon lice treatments for lice control.
    Stige LC; Huseby RB; Helgesen KO; Aldrin M; Qviller L
    Prev Vet Med; 2024 Mar; 224():106134. PubMed ID: 38325114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.