These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27317328)

  • 1. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations.
    Nishimura Y; Nakai H
    J Comput Chem; 2018 Jan; 39(2):105-116. PubMed ID: 29047123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations.
    Uratani H; Nakai H
    J Chem Phys; 2020 Jun; 152(22):224109. PubMed ID: 32534554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery.
    Chou CP; Sakti AW; Nishimura Y; Nakai H
    Chem Rec; 2019 Apr; 19(4):746-757. PubMed ID: 30462370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Large-Scale Excited-State Calculations Based on the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Ono J; Nishimura Y; Nakai H
    J Chem Theory Comput; 2019 Mar; 15(3):1719-1727. PubMed ID: 30673283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water.
    Sakti AW; Nishimura Y; Nakai H
    J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Nishimura Y; Nakai H
    J Chem Theory Comput; 2020 Apr; 16(4):2369-2378. PubMed ID: 32074445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear scaling algorithm for tight-binding molecular dynamics simulations.
    He ZH; Ye XB; Pan BC
    J Chem Phys; 2019 Mar; 150(11):114107. PubMed ID: 30902004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of the synthesis of boron-nitride nanostructures in a hot, high pressure gas volume.
    Krstic PS; Han L; Irle S; Nakai H
    Chem Sci; 2018 Apr; 9(15):3803-3819. PubMed ID: 29780513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divide-and-Conquer-Type Density-Functional Tight-Binding Molecular Dynamics Simulations of Proton Diffusion in a Bulk Water System.
    Nakai H; Sakti AW; Nishimura Y
    J Phys Chem B; 2016 Jan; 120(1):217-21. PubMed ID: 26694784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid QM/MM approach for biomolecular systems under periodic boundary conditions: Combination of the density-functional tight-binding theory and particle mesh Ewald method.
    Nishizawa H; Okumura H
    J Comput Chem; 2016 Dec; 37(31):2701-2711. PubMed ID: 27718264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional tight binding-based free energy simulations in the DFTB+ program.
    Mitchell I; Aradi B; Page AJ
    J Comput Chem; 2018 Nov; 39(29):2452-2458. PubMed ID: 30238475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPI/OpenMP hybrid parallel algorithm for resolution of identity second-order Møller-Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers.
    Katouda M; Nakajima T
    J Comput Chem; 2017 Mar; 38(8):489-507. PubMed ID: 28133838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Molecular Dynamics Simulations with Approximate QM: What Can We Learn?
    Irle S; Vuong VQ; Elayyan MH; Talipov MR; Abel SM
    Methods Mol Biol; 2020; 2114():149-161. PubMed ID: 32016892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated error control in divide-and-conquer self-consistent field calculations.
    Kobayashi M; Fujimori T; Taketsugu T
    J Comput Chem; 2018 Jun; 39(15):909-916. PubMed ID: 29399822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.