BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 27317429)

  • 1. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development.
    Cheng M; Jin X; Mu L; Wang F; Li W; Zhong X; Liu X; Shen W; Liu Y; Zhou Y
    J Neurosci Res; 2016 Sep; 94(9):814-24. PubMed ID: 27317429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation.
    Shinmyo Y; Tanaka S; Tsunoda S; Hosomichi K; Tajima A; Kawasaki H
    Sci Rep; 2016 Feb; 6():20611. PubMed ID: 26857612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells.
    Kamali E; Rahbarizadeh F; Hojati Z; Frödin M
    BMC Biotechnol; 2021 Jan; 21(1):9. PubMed ID: 33514392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
    Peng J; Zhou Y; Zhu S; Wei W
    FEBS J; 2015 Jun; 282(11):2089-96. PubMed ID: 25731961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.
    Cao QH; Shao HH; Qiu H; Li T; Zhang YZ; Tan XM
    Biosci Biotechnol Biochem; 2017 Mar; 81(3):453-459. PubMed ID: 27900888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. piggyBac transposon-mediated cellular transgenesis in mammalian forebrain by in utero electroporation.
    Chen F; Maher BJ; LoTurco JJ
    Cold Spring Harb Protoc; 2014 Jul; 2014(7):741-9. PubMed ID: 24987137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system.
    Zhou Y; Liu Y; Hussmann D; Brøgger P; Al-Saaidi RA; Tan S; Lin L; Petersen TS; Zhou GQ; Bross P; Aagaard L; Klein T; Rønn SG; Pedersen HD; Bolund L; Nielsen AL; Sørensen CB; Luo Y
    Cell Mol Life Sci; 2016 Jul; 73(13):2543-63. PubMed ID: 26755436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome modification by CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    FEBS J; 2014 Dec; 281(23):5186-93. PubMed ID: 25315507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.
    Matsunaga T; Yamashita JK
    Biochem Biophys Res Commun; 2014 Feb; 444(2):158-63. PubMed ID: 24462858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Gene Knockout in the Mouse Brain Using In Utero Electroporation.
    Shinmyo Y; Kawasaki H
    Curr Protoc Neurosci; 2017 Apr; 79():3.32.1-3.32.11. PubMed ID: 28398645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo.
    Luo W; Mizuno H; Iwata R; Nakazawa S; Yasuda K; Itohara S; Iwasato T
    Sci Rep; 2016 Oct; 6():35747. PubMed ID: 27775045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line.
    Yang M; Zhang L; Stevens J; Gibson G
    Bone; 2014 Dec; 69():118-25. PubMed ID: 25260929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for De Novo Gene Targeting Via In Utero Electroporation.
    Tsunekawa Y; Terhune RK; Matsuzaki F
    Methods Mol Biol; 2021; 2312():309-320. PubMed ID: 34228299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR mediated somatic cell genome engineering in the chicken.
    Véron N; Qu Z; Kipen PA; Hirst CE; Marcelle C
    Dev Biol; 2015 Nov; 407(1):68-74. PubMed ID: 26277216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes.
    Evers B; Jastrzebski K; Heijmans JP; Grernrum W; Beijersbergen RL; Bernards R
    Nat Biotechnol; 2016 Jun; 34(6):631-3. PubMed ID: 27111720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of CRISPR technology to high content screening in primary neurons.
    Callif BL; Maunze B; Krueger NL; Simpson MT; Blackmore MG
    Mol Cell Neurosci; 2017 Apr; 80():170-179. PubMed ID: 28110021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAX6 regulates human corneal epithelium cell identity.
    Kitazawa K; Hikichi T; Nakamura T; Sotozono C; Kinoshita S; Masui S
    Exp Eye Res; 2017 Jan; 154():30-38. PubMed ID: 27818314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.