BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 27317429)

  • 21. Therapeutic applications of CRISPR RNA-guided genome editing.
    Koo T; Kim JS
    Brief Funct Genomics; 2017 Jan; 16(1):38-45. PubMed ID: 27562951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paired CRISPR/Cas9 Nickases Mediate Efficient Site-Specific Integration of
    Wang Y; Zhao J; Duan N; Liu W; Zhang Y; Zhou M; Hu Z; Feng M; Liu X; Wu L; Li Z; Liang D
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas9 technology: applications and human disease modelling.
    Torres-Ruiz R; Rodriguez-Perales S
    Brief Funct Genomics; 2017 Jan; 16(1):4-12. PubMed ID: 27345434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells.
    Ramírez-Carvajal L; Singh N; de los Santos T; Rodríguez LL; Long CR
    Antiviral Res; 2016 Jan; 125():8-13. PubMed ID: 26592975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas9: a new and promising player in gene therapy.
    Xiao-Jie L; Hui-Ying X; Zun-Ping K; Jin-Lian C; Li-Juan J
    J Med Genet; 2015 May; 52(5):289-96. PubMed ID: 25713109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool.
    Wettstein R; Bodak M; Ciaudo C
    Methods Mol Biol; 2016; 1341():321-43. PubMed ID: 25762293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. piggyBac transposon-mediated cellular transgenesis in mammalian forebrain by in utero electroporation.
    Chen F; Maher BJ; LoTurco JJ
    Cold Spring Harb Protoc; 2014 Jul; 2014(7):741-9. PubMed ID: 24987137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient generation of hiPSC neural lineage specific knockin reporters using the CRISPR/Cas9 and Cas9 double nickase system.
    Li S; Xue H; Long B; Sun L; Truong T; Liu Y
    J Vis Exp; 2015 May; (99):e52539. PubMed ID: 26065872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9.
    Abrahimi P; Chang WG; Kluger MS; Qyang Y; Tellides G; Saltzman WM; Pober JS
    Circ Res; 2015 Jul; 117(2):121-8. PubMed ID: 25940550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes.
    Nakagawa Y; Sakuma T; Sakamoto T; Ohmuraya M; Nakagata N; Yamamoto T
    BMC Biotechnol; 2015 May; 15():33. PubMed ID: 25997509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
    Pellagatti A; Dolatshad H; Valletta S; Boultwood J
    Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo and in vitro disease modeling with CRISPR/Cas9.
    Kato T; Takada S
    Brief Funct Genomics; 2017 Jan; 16(1):13-24. PubMed ID: 27497066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A versatile bulk electrotransfection protocol for murine embryonic fibroblasts and iPS cells.
    Eghbalsaied S; Hyder I; Kues WA
    Sci Rep; 2020 Aug; 10(1):13332. PubMed ID: 32770110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.
    Kuscu C; Parlak M; Tufan T; Yang J; Szlachta K; Wei X; Mammadov R; Adli M
    Nat Methods; 2017 Jul; 14(7):710-712. PubMed ID: 28581493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of exogenous eGFP gene using RNA-guided endonuclease in bovine transgenic somatic cells.
    Choi W; Yum S; Lee S; Lee W; Lee J; Kim S; Koo O; Lee B; Jang G
    Zygote; 2015 Dec; 23(6):916-23. PubMed ID: 25424059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modularized CRISPR/dCas9 effector toolkit for target-specific gene regulation.
    Agne M; Blank I; Emhardt AJ; Gäbelein CG; Gawlas F; Gillich N; Gonschorek P; Juretschke TJ; Krämer SD; Louis N; Müller A; Rudorf A; Schäfer LM; Scheidmann MC; Schmunk LJ; Schwenk PM; Stammnitz MR; Warmer PM; Weber W; Fischer A; Kaufmann B; Wagner HJ; Radziwill G
    ACS Synth Biol; 2014 Dec; 3(12):986-9. PubMed ID: 25524106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites.
    Cui Y; Yu L
    Parasitol Int; 2016 Dec; 65(6 Pt A):641-644. PubMed ID: 27586395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.