BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27317984)

  • 1. Effect of preduodenal lipase inhibition in suckling rats on dietary octanoic acid (C8:0) gastric absorption and plasma octanoylated ghrelin concentration.
    Lemarié F; Cavalier JF; Garcia C; Boissel F; Point V; Catheline D; Legrand P; Carrière F; Rioux V
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt A):1111-1120. PubMed ID: 27317984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat.
    Lemarié F; Beauchamp E; Dayot S; Duby C; Legrand P; Rioux V
    PLoS One; 2015; 10(7):e0133600. PubMed ID: 26196391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary caprylic acid and ghrelin O-acyltransferase activity to modulate octanoylated ghrelin functions: What is new in this nutritional field?
    Lemarié F; Beauchamp E; Drouin G; Legrand P; Rioux V
    Prostaglandins Leukot Essent Fatty Acids; 2018 Aug; 135():121-127. PubMed ID: 30103923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation.
    Lemarié F; Beauchamp E; Legrand P; Rioux V
    Biochimie; 2016 Jan; 120():40-8. PubMed ID: 26253695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastric lipolysis in the developing rat. Ontogeny of the lipases active in the stomach.
    Liao TH; Hamosh P; Hamosh M
    Biochim Biophys Acta; 1983 Nov; 754(1):1-9. PubMed ID: 6626561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slowing down fat digestion and absorption by an oxadiazolone inhibitor targeting selectively gastric lipolysis.
    Point V; Bénarouche A; Zarrillo J; Guy A; Magnez R; Fonseca L; Raux B; Leclaire J; Buono G; Fotiadu F; Durand T; Carrière F; Vaysse C; Couëdelo L; Cavalier JF
    Eur J Med Chem; 2016 Nov; 123():834-848. PubMed ID: 27543878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin.
    Nishi Y; Hiejima H; Hosoda H; Kaiya H; Mori K; Fukue Y; Yanase T; Nawata H; Kangawa K; Kojima M
    Endocrinology; 2005 May; 146(5):2255-64. PubMed ID: 15677766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory Effect of Oleic Acid on Octanoylated Ghrelin Production.
    Oiso S; Nobe M; Iwasaki S; Nii W; Goto N; Seki Y; Nakajima K; Nakamura K; Kariyazono H
    J Oleo Sci; 2015; 64(11):1185-92. PubMed ID: 26521811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gastric handling of medium-chain triglycerides and subsequent metabolism in the suckling rat.
    Levy E; Goldstein R; Stankievicz H; Hager E; Freier S
    J Pediatr Gastroenterol Nutr; 1984 Nov; 3(5):784-9. PubMed ID: 6502379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny and chain-length specificity of gastrointestinal lipases affect medium-chain triacylglycerol utilization by newborn pigs.
    Dicklin ME; Robinson JL; Lin X; Odle J
    J Anim Sci; 2006 Apr; 84(4):818-25. PubMed ID: 16543558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased Plasma Octanoylated Ghrelin Levels in Mice by Oleanolic Acid.
    Nakajima K; Maeda N; Oiso S; Kariyazono H
    J Oleo Sci; 2019 Jan; 68(1):103-109. PubMed ID: 30542007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gastric lipase in the newborn rat.
    Levy E; Goldstein R; Freier S; Shafrir E
    Pediatr Res; 1982 Jan; 16(1):69-74. PubMed ID: 7041065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Dietary Intake of Medium-Chain Triacylglycerides on the Intestinal Absorption of Poorly Permeable Compounds.
    Kataoka M; Ohi Y; Sakanoue K; Minami K; Higashino H; Yamashita S
    Mol Pharm; 2020 Jan; 17(1):212-218. PubMed ID: 31756103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a gastric cell-based assay system for exploring inhibitors of octanoylated ghrelin production.
    Oiso S; Nobe M; Yamaguchi Y; Umemoto S; Nakamura K; Kariyazono H
    J Biomol Screen; 2013 Oct; 18(9):1035-42. PubMed ID: 23704134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ghrelin acylation by ingestion of medium-chain fatty acids.
    Nishi Y; Mifune H; Kojima M
    Methods Enzymol; 2012; 514():303-15. PubMed ID: 22975061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chronic undernutrition and leptin on GOAT mRNA levels in rat stomach mucosa.
    González CR; Vázquez MJ; López M; Diéguez C
    J Mol Endocrinol; 2008 Dec; 41(6):415-21. PubMed ID: 18835978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fat digestion in the stomach: stability of lingual lipase in the gastric environment.
    Fink CS; Hamosh P; Hamosh M
    Pediatr Res; 1984 Mar; 18(3):248-54. PubMed ID: 6427744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pregnancy, but not dietary octanoic acid supplementation, stimulates the ghrelin-pituitary growth hormone axis in mice.
    Kaur H; Muhlhausler BS; Sim PS; Page AJ; Li H; Nunez-Salces M; Clarke GS; Huang L; Wilson RL; Veldhuis JD; Chen C; Roberts CT; Gatford KL
    J Endocrinol; 2020 May; 245(2):327-342. PubMed ID: 32176867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lingual and gastric lipases: species differences in the origin of prepancreatic digestive lipases and in the localization of gastric lipase.
    DeNigris SJ; Hamosh M; Kasbekar DK; Lee TC; Hamosh P
    Biochim Biophys Acta; 1988 Mar; 959(1):38-45. PubMed ID: 3125856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine.
    Liao TH; Hamosh P; Hamosh M
    Pediatr Res; 1984 May; 18(5):402-9. PubMed ID: 6728567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.