These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27318014)

  • 41. Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer.
    Ghosh A; Sonavane U; Joshi R
    Comput Biol Chem; 2014 Feb; 48():29-39. PubMed ID: 24291490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Homology modeling, agonist binding site identification, and docking in octopamine receptor of Periplaneta americana.
    Hirashima A; Huang H
    Comput Biol Chem; 2008 Jun; 32(3):185-90. PubMed ID: 18430608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods.
    Dong SS; Goddard WA; Abrol R
    Methods Cell Biol; 2017; 142():173-186. PubMed ID: 28964335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.
    Posokhov YO; Kyrychenko A
    Comput Biol Chem; 2013 Oct; 46():23-31. PubMed ID: 23764528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional molecular field analyses of octopaminergic agonists and antagonists for the locust neuronal octopamine receptor class 3.
    Hirashima A; Nagata T; Pan C; Kuwano E; Taniguchi E; Eto M
    J Mol Graph Model; 1999; 17(3-4):198-206, 218. PubMed ID: 10736777
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy.
    Lee HS; Seok C; Im W
    J Chem Theory Comput; 2015 Mar; 11(3):1255-66. PubMed ID: 26579772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis).
    Wu SF; Yao Y; Huang J; Ye GY
    J Exp Biol; 2012 Aug; 215(Pt 15):2646-52. PubMed ID: 22786641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamic and hydrogen-bonding analyses of the interaction between model lipid bilayers.
    Eun C; Berkowitz ML
    J Phys Chem B; 2010 Mar; 114(8):3013-9. PubMed ID: 20143884
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulating G protein-coupled receptors in native-like membranes: from monomers to oligomers.
    Guixà-González R; Ramírez-Anguita JM; Kaczor AA; Selent J
    Methods Cell Biol; 2013; 117():63-90. PubMed ID: 24143972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand-Induced Conformational Dynamics of A Tyramine Receptor from Sitophilus oryzae.
    Braza MKE; Gazmen JDN; Yu ET; Nellas RB
    Sci Rep; 2019 Nov; 9(1):16275. PubMed ID: 31700013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conformation Transition of Intracellular Part of Glucagon Receptor in Complex With Agonist Glucagon by Conventional and Accelerated Molecular Dynamics Simulations.
    Bai Q; Tan S; Pérez-Sánchez H; Feng H; Feng L; Liu H; Yao X
    Front Chem; 2019; 7():851. PubMed ID: 31921774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drug Discovery and Molecular Dynamics: Methods, Applications and Perspective Beyond the Second Timescale.
    Martínez-Rosell G; Giorgino T; Harvey MJ; de Fabritiis G
    Curr Top Med Chem; 2017; 17(23):2617-2625. PubMed ID: 28413955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulations of aqueous ions at the liquid-vapor interface accelerated using graphics processors.
    Bauer BA; Davis JE; Taufer M; Patel S
    J Comput Chem; 2011 Feb; 32(3):375-85. PubMed ID: 20862755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CH/π hydrogen bonds play a role in ligand recognition and equilibrium between active and inactive states of the β2 adrenergic receptor: an ab initio fragment molecular orbital (FMO) study.
    Ozawa T; Okazaki K; Kitaura K
    Bioorg Med Chem; 2011 Sep; 19(17):5231-7. PubMed ID: 21820903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations.
    Marino KA; Filizola M
    Methods Mol Biol; 2018; 1705():351-364. PubMed ID: 29188572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved Mechanism of Conformational Stability and Dynamics in G-Protein-Coupled Receptors.
    Bhattacharya S; Salomon-Ferrer R; Lee S; Vaidehi N
    J Chem Theory Comput; 2016 Nov; 12(11):5575-5584. PubMed ID: 27709935
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.
    Weichert D; Stanek M; Hübner H; Gmeiner P
    Bioorg Med Chem; 2016 Jun; 24(12):2641-53. PubMed ID: 27132867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study.
    Kooistra AJ; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1045-61. PubMed ID: 25848966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR.
    Lamichhane R; Liu JJ; Pljevaljcic G; White KL; van der Schans E; Katritch V; Stevens RC; Wüthrich K; Millar DP
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14254-9. PubMed ID: 26578769
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor.
    Miao Y; Caliman AD; McCammon JA
    Biophys J; 2015 Apr; 108(7):1796-1806. PubMed ID: 25863070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.