These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27318439)

  • 1. Calculation of muscle forces during normal gait under consideration of femoral bending moments.
    Lutz F; Mastel R; Runge M; Stief F; Schmidt A; Meurer A; Witte H
    Med Eng Phys; 2016 Sep; 38(9):1008-15. PubMed ID: 27318439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of muscle forces on femoral strain distribution.
    Duda GN; Heller M; Albinger J; Schulz O; Schneider E; Claes L
    J Biomech; 1998 Sep; 31(9):841-6. PubMed ID: 9802785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal forces and moments in the femur of the rat during gait.
    Wehner T; Wolfram U; Henzler T; Niemeyer F; Claes L; Simon U
    J Biomech; 2010 Sep; 43(13):2473-9. PubMed ID: 20566196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach.
    Altai Z; Montefiori E; van Veen B; A Paggiosi M; McCloskey EV; Viceconti M; Mazzà C; Li X
    PLoS One; 2021; 16(2):e0245121. PubMed ID: 33524024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth.
    Kainz H; Killen BA; Wesseling M; Perez-Boerema F; Pitto L; Garcia Aznar JM; Shefelbine S; Jonkers I
    PLoS One; 2020; 15(7):e0235966. PubMed ID: 32702015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.
    Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR
    Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.
    Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D
    Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement.
    Martelli S; Kersh ME; Pandy MG
    J Biomech; 2015 Oct; 48(13):3606-15. PubMed ID: 26315919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal forces and moments in the femur during walking.
    Duda GN; Schneider E; Chao EY
    J Biomech; 1997 Sep; 30(9):933-41. PubMed ID: 9302616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling.
    Chang CY; Rupp JD; Reed MP; Hughes RE; Schneider LW
    Stapp Car Crash J; 2009 Nov; 53():291-328. PubMed ID: 20058559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait.
    Li J
    J Mech Behav Biomed Mater; 2021 Jan; 113():104136. PubMed ID: 33053499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of ground reaction forces and moments during various activities of daily living.
    Fluit R; Andersen MS; Kolk S; Verdonschot N; Koopman HF
    J Biomech; 2014 Jul; 47(10):2321-9. PubMed ID: 24835471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking.
    Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J
    PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur.
    Vahdati A; Walscharts S; Jonkers I; Garcia-Aznar JM; Vander Sloten J; van Lenthe GH
    J Mech Behav Biomed Mater; 2014 Feb; 30():244-52. PubMed ID: 24342624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.