BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27318455)

  • 1. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.
    Schütte KH; Aeles J; De Beéck TO; van der Zwaard BC; Venter R; Vanwanseele B
    Gait Posture; 2016 Jul; 48():220-225. PubMed ID: 27318455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based loading and stability.
    Schütte KH; Seerden S; Venter R; Vanwanseele B
    Gait Posture; 2018 Jan; 59():222-228. PubMed ID: 29080511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.
    Schütte KH; Maas EA; Exadaktylos V; Berckmans D; Venter RE; Vanwanseele B
    PLoS One; 2015; 10(10):e0141957. PubMed ID: 26517261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost of running instability evaluated with wearable trunk accelerometry.
    Schütte KH; Sackey S; Venter R; Vanwanseele B
    J Appl Physiol (1985); 2018 Feb; 124(2):462-472. PubMed ID: 28751372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A narrative review of potential measures of dynamic stability to be used during outdoor locomotion on different surfaces.
    Svenningsen FP; Pavailler S; Giandolini M; Horvais N; Madeleine P
    Sports Biomech; 2020 Feb; 19(1):120-140. PubMed ID: 31456487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of three surface conditions, speed and running experience on vertical acceleration of the tibia during running.
    Boey H; Aeles J; Schütte K; Vanwanseele B
    Sports Biomech; 2017 Jun; 16(2):166-176. PubMed ID: 27595311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibial acceleration and shock attenuation while running over different surfaces in a trail environment.
    Garcia MC; Gust G; Bazett-Jones DM
    J Sci Med Sport; 2021 Nov; 24(11):1161-1165. PubMed ID: 33766445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Pilot Study Using Entropy as a Noninvasive Assessment of Running.
    Murray AM; Ryu JH; Sproule J; Turner AP; Graham-Smith P; Cardinale M
    Int J Sports Physiol Perform; 2017 Sep; 12(8):1119-1122. PubMed ID: 28095075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of lower extremity kinematics to trunk accelerations during moderate treadmill running.
    Lindsay TR; Yaggie JA; McGregor SJ
    J Neuroeng Rehabil; 2014 Dec; 11():162. PubMed ID: 25495782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between Lower Limb Kinematics and Upper Trunk Acceleration in Recreational Runners.
    Simoni L; Pancani S; Vannetti F; Macchi C; Pasquini G
    J Healthc Eng; 2020; 2020():8973010. PubMed ID: 32015797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower trunk motion and speed-dependence during walking.
    Kavanagh JJ
    J Neuroeng Rehabil; 2009 Apr; 6():9. PubMed ID: 19356256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing.
    Milner CE; Hawkins JL; Aubol KG
    Med Sci Sports Exerc; 2020 Jun; 52(6):1361-1366. PubMed ID: 31913243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test-Retest Reliability of an Automated Infrared-Assisted Trunk Accelerometer-Based Gait Analysis System.
    Hsu CY; Tsai YS; Yau CS; Shie HH; Wu CM
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27455281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wireless accelerometer node for reliable and valid measurement of lumbar accelerations during treadmill running.
    Lindsay TR; Yaggie JA; McGregor SJ
    Sports Biomech; 2016; 15(1):11-22. PubMed ID: 26836779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements.
    Nedergaard NJ; Robinson MA; Eusterwiemann E; Drust B; Lisboa PJ; Vanrenterghem J
    Int J Sports Physiol Perform; 2017 Jan; 12(1):18-26. PubMed ID: 27002795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer.
    Kobsar D; Olson C; Paranjape R; Hadjistavropoulos T; Barden JM
    Gait Posture; 2014; 39(1):553-7. PubMed ID: 24139685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the correlations between impact loading rates and peak accelerations measured at two different body sites: Intra- and inter-subject analysis.
    Zhang JH; An WW; Au IP; Chen TL; Cheung RT
    Gait Posture; 2016 May; 46():53-6. PubMed ID: 27131177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of stroke patient walking dynamics using a tri-axial accelerometer.
    Mizuike C; Ohgi S; Morita S
    Gait Posture; 2009 Jul; 30(1):60-4. PubMed ID: 19349181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Running biomechanics as measured by wearable sensors: effects of speed and surface.
    Hollis CR; Koldenhoven RM; Resch JE; Hertel J
    Sports Biomech; 2021 Aug; 20(5):521-531. PubMed ID: 30843475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.