BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27318486)

  • 1. Targeting the Diabetic Chaperome to Improve Peripheral Neuropathy.
    Dobrowsky RT
    Curr Diab Rep; 2016 Aug; 16(8):71. PubMed ID: 27318486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The epichaperome is an integrated chaperome network that facilitates tumour survival.
    Rodina A; Wang T; Yan P; Gomes ED; Dunphy MP; Pillarsetty N; Koren J; Gerecitano JF; Taldone T; Zong H; Caldas-Lopes E; Alpaugh M; Corben A; Riolo M; Beattie B; Pressl C; Peter RI; Xu C; Trondl R; Patel HJ; Shimizu F; Bolaender A; Yang C; Panchal P; Farooq MF; Kishinevsky S; Modi S; Lin O; Chu F; Patil S; Erdjument-Bromage H; Zanzonico P; Hudis C; Studer L; Roboz GJ; Cesarman E; Cerchietti L; Levine R; Melnick A; Larson SM; Lewis JS; Guzman ML; Chiosis G
    Nature; 2016 Oct; 538(7625):397-401. PubMed ID: 27706135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective targeting of the stress chaperome as a therapeutic strategy.
    Taldone T; Ochiana SO; Patel PD; Chiosis G
    Trends Pharmacol Sci; 2014 Nov; 35(11):592-603. PubMed ID: 25262919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A commentary on: Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy.
    Braswell K; Dickey CA; Jinwal UK
    Exp Neurol; 2013 Mar; 241():122-4. PubMed ID: 23298520
    [No Abstract]   [Full Text] [Related]  

  • 5. Targeting Hsp90 and its co-chaperones to treat Alzheimer's disease.
    Blair LJ; Sabbagh JJ; Dickey CA
    Expert Opin Ther Targets; 2014 Oct; 18(10):1219-32. PubMed ID: 25069659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Chemical Biology Approach to the Chaperome in Cancer-HSP90 and Beyond.
    Taldone T; Wang T; Rodina A; Pillarsetty NVK; Digwal CS; Sharma S; Yan P; Joshi S; Pagare PP; Bolaender A; Roboz GJ; Guzman ML; Chiosis G
    Cold Spring Harb Perspect Biol; 2020 Apr; 12(4):. PubMed ID: 30936118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone.
    Singh JK; Hutt DM; Tait B; Guy NC; Sivils JC; Ortiz NR; Payan AN; Komaragiri SK; Owens JJ; Culbertson D; Blair LJ; Dickey C; Kuo SY; Finley D; Dyson HJ; Cox MB; Chaudhary J; Gestwicki JE; Balch WE
    Cell Chem Biol; 2020 Mar; 27(3):292-305.e6. PubMed ID: 32017918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy.
    Urban MJ; Pan P; Farmer KL; Zhao H; Blagg BS; Dobrowsky RT
    Exp Neurol; 2012 May; 235(1):388-96. PubMed ID: 22465570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperome Networks - Redundancy and Implications for Cancer Treatment.
    Yan P; Wang T; Guzman ML; Peter RI; Chiosis G
    Adv Exp Med Biol; 2020; 1243():87-99. PubMed ID: 32297213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperome heterogeneity and its implications for cancer study and treatment.
    Wang T; Rodina A; Dunphy MP; Corben A; Modi S; Guzman ML; Gewirth DT; Chiosis G
    J Biol Chem; 2019 Feb; 294(6):2162-2179. PubMed ID: 30409908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting chaperones in transformed systems--a focus on Hsp90 and cancer.
    Chiosis G
    Expert Opin Ther Targets; 2006 Feb; 10(1):37-50. PubMed ID: 16441227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic atlas of chaperome deregulation topologies across the human cancer landscape.
    Hadizadeh Esfahani A; Sverchkova A; Saez-Rodriguez J; Schuppert AA; Brehme M
    PLoS Comput Biol; 2018 Jan; 14(1):e1005890. PubMed ID: 29293508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoting Neuronal Tolerance of Diabetic Stress: Modulating Molecular Chaperones.
    Emery SM; Dobrowsky RT
    Int Rev Neurobiol; 2016; 127():181-210. PubMed ID: 27133150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
    Wang X; Venable J; LaPointe P; Hutt DM; Koulov AV; Coppinger J; Gurkan C; Kellner W; Matteson J; Plutner H; Riordan JR; Kelly JW; Yates JR; Balch WE
    Cell; 2006 Nov; 127(4):803-15. PubMed ID: 17110338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding.
    Freeman BC; Morimoto RI
    EMBO J; 1996 Jun; 15(12):2969-79. PubMed ID: 8670798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hsp90 as a Potential Therapeutic Target in Retinal Disease.
    Aguilà M; Cheetham ME
    Adv Exp Med Biol; 2016; 854():161-7. PubMed ID: 26427407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Cellular Response to the HSP90 Inhibition in Human Cells Through Thermal Proteome Profiling.
    Yin K; Wu R
    Mol Cell Proteomics; 2023 Jun; 22(6):100560. PubMed ID: 37119972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hsp90: From Cellular to Organismal Proteostasis.
    Somogyvári M; Khatatneh S; Sőti C
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp90: a chaperone for protein folding and gene regulation.
    Zhao R; Houry WA
    Biochem Cell Biol; 2005 Dec; 83(6):703-10. PubMed ID: 16333321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HSP90 chaperone machinery.
    Schopf FH; Biebl MM; Buchner J
    Nat Rev Mol Cell Biol; 2017 Jun; 18(6):345-360. PubMed ID: 28429788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.