These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 27318738)
1. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay. Jiang J; Zhang C; Zeng GM; Gong JL; Chang YN; Song B; Deng CH; Liu HY J Hazard Mater; 2016 Nov; 317():416-429. PubMed ID: 27318738 [TBL] [Abstract][Full Text] [Related]
2. Preparation of melamine sponge decorated with silver nanoparticles-modified graphene for water disinfection. Deng CH; Gong JL; Zhang P; Zeng GM; Song B; Liu HY J Colloid Interface Sci; 2017 Feb; 488():26-38. PubMed ID: 27821337 [TBL] [Abstract][Full Text] [Related]
3. Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles. Loo SL; Krantz WB; Fane AG; Gao Y; Lim TT; Hu X Environ Sci Technol; 2015 Feb; 49(4):2310-8. PubMed ID: 25650519 [TBL] [Abstract][Full Text] [Related]
4. Preparation and antibacterial activity of lysozyme and layered double hydroxide nanocomposites. Yang QZ; Chang YY; Zhao HZ Water Res; 2013 Nov; 47(17):6712-8. PubMed ID: 24053938 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Bao Q; Zhang D; Qi P J Colloid Interface Sci; 2011 Aug; 360(2):463-70. PubMed ID: 21628064 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Song B; Zhang C; Zeng G; Gong J; Chang Y; Jiang Y Arch Biochem Biophys; 2016 Aug; 604():167-76. PubMed ID: 27170600 [TBL] [Abstract][Full Text] [Related]
8. Thermosensitive curcumin/silver/montmorillonite-F127 hydrogels with synergistic photodynamic/photothermal/silver ions antibacterial activity. Liu JH; Chen XL; Yang HM; Yin YR; Kurniawan A; Zhou CH J Mater Chem B; 2024 Jul; 12(28):6874-6885. PubMed ID: 38912877 [TBL] [Abstract][Full Text] [Related]
9. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells. Korshed P; Li L; Liu Z; Wang T PLoS One; 2016; 11(8):e0160078. PubMed ID: 27575485 [TBL] [Abstract][Full Text] [Related]
10. The antibacterial activity of ceramsite coated by silver nanoparticles in micropore. Qiu S; Huang X; Xu S; Ma F Appl Biochem Biotechnol; 2015 May; 176(1):267-76. PubMed ID: 25820386 [TBL] [Abstract][Full Text] [Related]
11. Highly effective antibacterial activity by the synergistic effect of three dimensional ordered mesoporous carbon-lysozyme composite. Wang J; Tang L; Somasundaran P; Fan W; Zeng G; Deng Y; Zhou Y; Wang J; Shen Y J Colloid Interface Sci; 2017 Oct; 503():131-141. PubMed ID: 28511102 [TBL] [Abstract][Full Text] [Related]
12. Disinfection action of electrostatic versus steric-stabilized silver nanoparticles on E. coli under different water chemistries. Fauss EK; MacCuspie RI; Oyanedel-Craver V; Smith JA; Swami NS Colloids Surf B Biointerfaces; 2014 Jan; 113():77-84. PubMed ID: 24060931 [TBL] [Abstract][Full Text] [Related]
13. Effective bactericidal performance of silver-decorated titania nano-composites. Liu J; Wang Z; Luo Z; Bashir S Dalton Trans; 2013 Feb; 42(6):2158-66. PubMed ID: 23188226 [TBL] [Abstract][Full Text] [Related]
14. Impact of solution chemistry on the properties and bactericidal activity of silver nanoparticles decorated on superabsorbent cryogels. Loo SL; Krantz WB; Hu X; Fane AG; Lim TT J Colloid Interface Sci; 2016 Jan; 461():104-113. PubMed ID: 26397916 [TBL] [Abstract][Full Text] [Related]
15. Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity. Gabriel JS; Gonzaga VAM; Poli AL; Schmitt CC Carbohydr Polym; 2017 Sep; 171():202-210. PubMed ID: 28578955 [TBL] [Abstract][Full Text] [Related]
16. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Agnihotri S; Mukherji S; Mukherji S Nanoscale; 2013 Aug; 5(16):7328-40. PubMed ID: 23821237 [TBL] [Abstract][Full Text] [Related]
17. Characterization and photochemical and antibacterial properties of highly stable silver nanoparticles prepared on montmorillonite clay in n-hexanol. Miyoshi H; Ohno H; Sakai K; Okamura N; Kourai H J Colloid Interface Sci; 2010 May; 345(2):433-41. PubMed ID: 20172529 [TBL] [Abstract][Full Text] [Related]
18. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application. Jana S; Kondakova AV; Shevchenko SN; Sheval EV; Gonchar KA; Timoshenko VY; Vasiliev AN Colloids Surf B Biointerfaces; 2017 Mar; 151():249-254. PubMed ID: 28024201 [TBL] [Abstract][Full Text] [Related]
19. Bactericidal activity of Ag-doped multi-walled carbon nanotubes and the effects of extracellular polymeric substances and natural organic matter. Su R; Jin Y; Liu Y; Tong M; Kim H Colloids Surf B Biointerfaces; 2013 Apr; 104():133-9. PubMed ID: 23298598 [TBL] [Abstract][Full Text] [Related]
20. Combined effects of Ag nanoparticles and oxygen plasma treatment on PLGA morphological, chemical, and antibacterial properties. Fortunati E; Mattioli S; Visai L; Imbriani M; Fierro JL; Kenny JM; Armentano I Biomacromolecules; 2013 Mar; 14(3):626-36. PubMed ID: 23360180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]