BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

978 related articles for article (PubMed ID: 27320198)

  • 1. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
    Peffer S; Gonçalves D; Morano KA
    J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic inactivation of essential
    Ciccarelli M; Masser AE; Kaimal JM; Planells J; Andréasson C
    Mol Biol Cell; 2023 Sep; 34(10):ar101. PubMed ID: 37467033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
    Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS
    Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.
    Yamamoto N; Maeda Y; Ikeda A; Sakurai H
    Eukaryot Cell; 2008 May; 7(5):783-90. PubMed ID: 18359875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response.
    Krakowiak J; Zheng X; Patel N; Feder ZA; Anandhakumar J; Valerius K; Gross DS; Khalil AS; Pincus D
    Elife; 2018 Feb; 7():. PubMed ID: 29393852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.
    Haitani Y; Takagi H
    Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size doesn't matter in the heat shock response.
    Pincus D
    Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity.
    Truman AW; Millson SH; Nuttall JM; Mollapour M; Prodromou C; Piper PW
    Eukaryot Cell; 2007 Apr; 6(4):744-52. PubMed ID: 17293484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsf1 on a leash - controlling the heat shock response by chaperone titration.
    Masser AE; Ciccarelli M; Andréasson C
    Exp Cell Res; 2020 Nov; 396(1):112246. PubMed ID: 32861670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation.
    Zheng X; Krakowiak J; Patel N; Beyzavi A; Ezike J; Khalil AS; Pincus D
    Elife; 2016 Nov; 5():. PubMed ID: 27831465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor.
    Conlin LK; Nelson HC
    Mol Cell Biol; 2007 Feb; 27(4):1505-15. PubMed ID: 17145780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights from yeast into whether the inhibition of heat shock transcription factor (Hsf1) by rapamycin can prevent the Hsf1 activation that results from treatment with an Hsp90 inhibitor.
    Millson SH; Piper PW
    Oncotarget; 2014 Jul; 5(13):5054-64. PubMed ID: 24970820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1 -/- mice.
    Gong TW; Fairfield DA; Fullarton L; Dolan DF; Altschuler RA; Kohrman DC; Lomax MI
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):29-37. PubMed ID: 21932106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits.
    Veri AO; Robbins N; Cowen LE
    FEMS Yeast Res; 2018 Aug; 18(5):. PubMed ID: 29788061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular chaperones as HSF1-specific transcriptional repressors.
    Shi Y; Mosser DD; Morimoto RI
    Genes Dev; 1998 Mar; 12(5):654-66. PubMed ID: 9499401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1.
    Masser AE; Kang W; Roy J; Mohanakrishnan Kaimal J; Quintana-Cordero J; Friedländer MR; Andréasson C
    Elife; 2019 Sep; 8():. PubMed ID: 31552827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular localization of the J-protein Sis1 regulates the heat shock response.
    Feder ZA; Ali A; Singh A; Krakowiak J; Zheng X; Bindokas VP; Wolfgeher D; Kron SJ; Pincus D
    J Cell Biol; 2021 Jan; 220(1):. PubMed ID: 33326013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.