These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27320378)

  • 21. Retention models for ionizable compounds in reversed-phase liquid chromatography: effect of variation of mobile phase composition and temperature.
    Rosés M; Subirats X; Bosch E
    J Chromatogr A; 2009 Mar; 1216(10):1756-75. PubMed ID: 19167714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wayne State University experimental descriptor database for use with the solvation parameter model.
    Poole CF
    J Chromatogr A; 2020 Apr; 1617():460841. PubMed ID: 31954542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the Goss-modified solvation parameter model for the characterization of biphasic systems and descriptor assignments.
    Poole CF
    J Chromatogr A; 2024 Aug; 1730():465143. PubMed ID: 38991600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited.
    Jandera P; Hájek T; Šromová Z
    J Chromatogr A; 2018 Mar; 1543():48-57. PubMed ID: 29486886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-dependent separation of trinucleotides by ion-interaction reversed-phase liquid chromatography-A structure-retention study assisted by soft-modelling and molecular dynamics.
    Mikulášek K; Jaroň KS; Kulhánek P; Bittová M; Havliš J
    J Chromatogr A; 2016 Oct; 1469():88-95. PubMed ID: 27692640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids.
    Poole CF
    J Chromatogr A; 2004 May; 1037(1-2):49-82. PubMed ID: 15214660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation.
    Liang C; Qiao JQ; Lian HZ
    J Chromatogr A; 2017 Dec; 1528():25-34. PubMed ID: 29103597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model.
    Poole CF; Ariyasena TC; Lenca N
    J Chromatogr A; 2013 Nov; 1317():85-104. PubMed ID: 23768535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography.
    Poole CF
    J Chromatogr A; 2020 Aug; 1626():461308. PubMed ID: 32797813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of theoretical and experimental models for characterizing solvent properties using reversed phase liquid chromatography.
    Liu T; Nicholls IA; Öberg T
    Anal Chim Acta; 2011 Sep; 702(1):37-44. PubMed ID: 21819857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of subcritical water as an eluent for reversed-phase liquid chromatography--disruption of the hydrogen-bond network at elevated temperature and its consequences.
    Allmon SD; Dorsey JG
    J Chromatogr A; 2010 Sep; 1217(37):5769-75. PubMed ID: 20692667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of novel metallacarborane-based sorbents by linear solvation energy relationships.
    Sýkora D; Rídká K; Tesařová E; Kalíková K; Kaplánek R; Král V
    J Chromatogr A; 2014 Dec; 1371():220-6. PubMed ID: 25456600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.
    Aral H; Aral T; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2013 Nov; 116():155-63. PubMed ID: 24148387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revised descriptors for polycyclic aromatic and related hydrocarbons for the prediction of environmental properties using the solvation parameter model.
    Poole CF
    J Chromatogr A; 2023 Nov; 1710():464430. PubMed ID: 37812944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversed-phase high performance liquid chromatography (RP-HPLC) characteristics of some 9,10-anthraquinone derivatives using binary acetonitrile-water mixtures as mobile phase.
    Hemmateenejad B; Shamsipur M; Safavi A; Sharghi H; Amiri AA
    Talanta; 2008 Oct; 77(1):351-9. PubMed ID: 18804645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins.
    Jandera P; Kučerová Z; Urban J
    J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear free energy relationship models for the retention of partially ionized acid-base compounds in reversed-phase liquid chromatography.
    Soriano-Meseguer S; Fuguet E; Abraham MH; Port A; Rosés M
    J Chromatogr A; 2021 Jan; 1635():461720. PubMed ID: 33234293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retention and bandwidths prediction in fast gradient liquid chromatography. Part 2-Core-shell columns.
    Jandera P; Hájek T; Vyňuchalová K
    J Chromatogr A; 2014 Apr; 1337():57-66. PubMed ID: 24636562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Column selectivity from the perspective of the solvation parameter model.
    Poole CF; Poole SK
    J Chromatogr A; 2002 Aug; 965(1-2):263-99. PubMed ID: 12236531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Instrument parameters controlling retention precision in gradient elution reversed-phase liquid.
    Beyaza A; Fana W; Carr PW; Schellinger AP
    J Chromatogr A; 2014 Dec; 1371():90-105. PubMed ID: 25459648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.