These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 27320387)

  • 41. Trigger factor lacking the PPIase domain can enhance the folding of eukaryotic multi-domain proteins in Escherichia coli.
    Gupta R; Lakshmipathy SK; Chang HC; Etchells SA; Hartl FU
    FEBS Lett; 2010 Aug; 584(16):3620-4. PubMed ID: 20659464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. C-terminal 13-residue truncation induces compact trigger factor conformation and severely impairs its dimerization ability.
    Shi Y; Yu L; Kihara H; Zhou JM
    Protein Pept Lett; 2014 May; 21(5):476-82. PubMed ID: 24555433
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformational dynamics of bacterial trigger factor in apo and ribosome-bound states.
    Can MT; Kurkcuoglu Z; Ezeroglu G; Uyar A; Kurkcuoglu O; Doruker P
    PLoS One; 2017; 12(4):e0176262. PubMed ID: 28437479
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interplay between trigger factor and other protein biogenesis factors on the ribosome.
    Bornemann T; Holtkamp W; Wintermeyer W
    Nat Commun; 2014 Jun; 5():4180. PubMed ID: 24939037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell biology: sight at the end of the tunnel.
    Horwich A
    Nature; 2004 Sep; 431(7008):520-2. PubMed ID: 15457244
    [No Abstract]   [Full Text] [Related]  

  • 46. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action.
    Baram D; Pyetan E; Sittner A; Auerbach-Nevo T; Bashan A; Yonath A
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12017-22. PubMed ID: 16091460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone.
    Martinez-Hackert E; Hendrickson WA
    Cell; 2009 Sep; 138(5):923-34. PubMed ID: 19737520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure and function of the molecular chaperone Trigger Factor.
    Hoffmann A; Bukau B; Kramer G
    Biochim Biophys Acta; 2010 Jun; 1803(6):650-61. PubMed ID: 20132842
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes.
    Hesterkamp T; Deuerling E; Bukau B
    J Biol Chem; 1997 Aug; 272(35):21865-71. PubMed ID: 9268318
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural insight into proline
    Kawagoe S; Nakagawa H; Kumeta H; Ishimori K; Saio T
    J Biol Chem; 2018 Sep; 293(39):15095-15106. PubMed ID: 30093407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structures of and interactions between domains of trigger factor from Thermotoga maritima.
    Martinez-Hackert E; Hendrickson WA
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):536-47. PubMed ID: 17372359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity.
    Merz F; Hoffmann A; Rutkowska A; Zachmann-Brand B; Bukau B; Deuerling E
    J Biol Chem; 2006 Oct; 281(42):31963-71. PubMed ID: 16926148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trigger Factor-Induced Nascent Chain Dynamics Changes Suggest Two Different Chaperone-Nascent Chain Interactions during Translation.
    Koubek J; Chang YC; Yang SY; Huang JJ
    J Mol Biol; 2017 Jun; 429(11):1733-1745. PubMed ID: 28385637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cotranslational processing mechanisms: towards a dynamic 3D model.
    Giglione C; Fieulaine S; Meinnel T
    Trends Biochem Sci; 2009 Aug; 34(8):417-26. PubMed ID: 19647435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissecting functional similarities of ribosome-associated chaperones from Saccharomyces cerevisiae and Escherichia coli.
    Rauch T; Hundley HA; Pfund C; Wegrzyn RD; Walter W; Kramer G; Kim SY; Craig EA; Deuerling E
    Mol Microbiol; 2005 Jul; 57(2):357-65. PubMed ID: 15978070
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions.
    Zhang Y; Mandava CS; Cao W; Li X; Zhang D; Li N; Zhang Y; Zhang X; Qin Y; Mi K; Lei J; Sanyal S; Gao N
    Nat Struct Mol Biol; 2015 Nov; 22(11):906-13. PubMed ID: 26458047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trigger factor binding to ribosomes with nascent peptide chains of varying lengths and sequences.
    Raine A; Lovmar M; Wikberg J; Ehrenberg M
    J Biol Chem; 2006 Sep; 281(38):28033-8. PubMed ID: 16829677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cotranslational Protein Folding inside the Ribosome Exit Tunnel.
    Nilsson OB; Hedman R; Marino J; Wickles S; Bischoff L; Johansson M; Müller-Lucks A; Trovato F; Puglisi JD; O'Brien EP; Beckmann R; von Heijne G
    Cell Rep; 2015 Sep; 12(10):1533-40. PubMed ID: 26321634
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae.
    Ludlam AV; Moore BA; Xu Z
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13436-41. PubMed ID: 15353602
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformational dynamics of Peb4 exhibit "mother's arms" chain model: a molecular dynamics study.
    Dantu SC; Khavnekar S; Kale A
    J Biomol Struct Dyn; 2017 Aug; 35(10):2186-2196. PubMed ID: 27434141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.