These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27320438)

  • 1. Influence of activated-carbon-supported transition metals on the decomposition of polychlorobiphenyls. Part II: Chemical and physical characterization and mechanistic study.
    Sun Y; Liu L; Oshita K; Zeng X; Wang W; Zhang Y
    Chemosphere; 2016 Sep; 159():668-675. PubMed ID: 27320438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of activated-carbon-supported transition metals on the decomposition of polychlorobiphenyls. Part I: Catalytic decomposition and kinetic analysis.
    Sun Y; Tao F; Liu L; Zeng X; Wang W
    Chemosphere; 2016 Sep; 159():659-667. PubMed ID: 27178638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of 2,2',4,4',5,5'-hexachlorobiphenyl with iron supported on an activated carbon from an ion-exchange resin.
    Sun Y; Takaoka M; Takeda N; Wang W; Zeng X; Zhu T
    Chemosphere; 2012 Aug; 88(7):895-902. PubMed ID: 22560977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dechlorination of polychlorinated biphenyls by iron and its oxides.
    Sun Y; Liu X; Kainuma M; Wang W; Takaoka M; Takeda N
    Chemosphere; 2015 Oct; 137():78-86. PubMed ID: 26011415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and reaction pathway of Aroclor 1254 removal by novel bimetallic catalysts supported on activated carbon.
    Xu J; Liu Y; Tao F; Sun Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):749-755. PubMed ID: 30245430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron.
    Sun Y; Takaoka M; Takeda N; Matsumoto T; Oshita K
    Chemosphere; 2006 Oct; 65(2):183-9. PubMed ID: 16630644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature decomposition of Aroclor 1254 over AC-supported Ni-Fe bimetallic catalysts: Kinetic and thermodynamic study.
    Liu L; Meng Y; Liang J; Xia D; Sun Y
    Sci Total Environ; 2019 May; 666():591-597. PubMed ID: 30807949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the low-temperature decomposition of Aroclor 1254 over activated carbon-supported bimetallic catalysts obtained with XANES and DFT calculations.
    Liu Y; Diao X; Tao F; Yang C; Wang H; Takaoka M; Sun Y
    J Hazard Mater; 2019 Mar; 366():538-544. PubMed ID: 30572293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic dechlorination of Aroclor 1242 by Ni/Fe bimetallic nanoparticles.
    Zhang Z; Hu S; Baig SA; Tang J; Xu X
    J Colloid Interface Sci; 2012 Nov; 385(1):160-5. PubMed ID: 22863064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd/C-catalyzed dechlorination of polychlorinated biphenyls under hydrogen gas-free conditions.
    Ishihara S; Ido A; Monguchi Y; Nagase H; Sajiki H
    J Hazard Mater; 2012 Aug; 229-230():15-9. PubMed ID: 22738771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature selective catalytic reduction of nitric oxide with urea over activated carbon supported metal oxide catalysts.
    Liu K; Yu Q; Wang B; Qin Q; Wei M; Fu Q
    Environ Technol; 2020 Mar; 41(7):808-821. PubMed ID: 30118387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida.
    Paul P; Ghosh U
    Environ Pollut; 2011 Dec; 159(12):3763-8. PubMed ID: 21840094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characteristics of carbonaceous adsorbent for dioxin-like polychlorinated biphenyl adsorption.
    Kawashima A; Katayama M; Matsumoto N; Honda K
    Chemosphere; 2011 Apr; 83(6):823-30. PubMed ID: 21435691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon.
    Vasilyeva GK; Strijakova ER; Nikolaeva SN; Lebedev AT; Shea PJ
    Environ Pollut; 2010 Mar; 158(3):770-7. PubMed ID: 19897290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of hexachlorobenzene over Al2O3 supported metal oxide catalysts.
    Zhang L; Zheng M; Zhang B; Liu W; Gao L; Ba T; Ren Z; Su G
    J Environ Sci (China); 2008; 20(12):1523-6. PubMed ID: 19209643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.
    Zhang J; Zhang J; Xu Y; Su H; Li X; Zhou JZ; Qian G; Li L; Xu ZP
    Environ Sci Technol; 2014 Oct; 48(19):11497-503. PubMed ID: 25191790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime.
    Denyes MJ; Rutter A; Zeeb BA
    Environ Pollut; 2013 Nov; 182():201-8. PubMed ID: 23933124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept.
    Choi H; Agarwal S; Al-Abed SR
    Environ Sci Technol; 2009 Jan; 43(2):488-93. PubMed ID: 19238984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon.
    Cho YM; Werner D; Choi Y; Luthy RG
    J Contam Hydrol; 2012 Mar; 129-130():25-37. PubMed ID: 22055155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition.
    Mohamed EF; Awad G; Zaitan H; Andriantsiferana C; Manero MH
    Environ Technol; 2018 Apr; 39(7):878-886. PubMed ID: 28368211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.