These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 27320741)
1. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA. Mills TJ; Mast MA; Thomas J; Keith G Sci Total Environ; 2016 Oct; 566-567():1621-1631. PubMed ID: 27320741 [TBL] [Abstract][Full Text] [Related]
2. The influence of nitrate on selenium in irrigated agricultural groundwater systems. Bailey RT; Hunter WJ; Gates TK J Environ Qual; 2012; 41(3):783-92. PubMed ID: 22565259 [TBL] [Abstract][Full Text] [Related]
3. Assessing selenium contamination in the irrigated stream-aquifer system of the Arkansas River, Colorado. Gates TK; Cody BM; Donnelly JP; Herting AW; Bailey RT; Mueller Price J J Environ Qual; 2009; 38(6):2344-56. PubMed ID: 19875790 [TBL] [Abstract][Full Text] [Related]
4. Naturally occurring contamination in the Mancos Shale. Morrison SJ; Goodknight CS; Tigar AD; Bush RP; Gil A Environ Sci Technol; 2012 Feb; 46(3):1379-87. PubMed ID: 22225529 [TBL] [Abstract][Full Text] [Related]
5. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830 [TBL] [Abstract][Full Text] [Related]
6. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999. May TW; Walther MJ; Petty JD; Fairchild JF; Lucero J; Delvaux M; Manring J; Armbruster M; Hartman D Environ Monit Assess; 2001 Nov; 72(2):179-206. PubMed ID: 11720223 [TBL] [Abstract][Full Text] [Related]
7. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
8. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Zhang Y; Li F; Zhang Q; Li J; Liu Q Sci Total Environ; 2014 Aug; 490():213-22. PubMed ID: 24858219 [TBL] [Abstract][Full Text] [Related]
9. Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: evidences from chemical and isotopic characteristics. Guo H; Zhang D; Wen D; Wu Y; Ni P; Jiang Y; Guo Q; Li F; Zheng H; Zhou Y Sci Total Environ; 2014 Aug; 490():590-602. PubMed ID: 24880548 [TBL] [Abstract][Full Text] [Related]
10. Assessing the effectiveness of land and water management practices on nonpoint source nitrate levels in an alluvial stream-aquifer system. Bailey RT; Gates TK; Romero EC J Contam Hydrol; 2015 Aug; 179():102-15. PubMed ID: 26080681 [TBL] [Abstract][Full Text] [Related]
11. Near-decadal changes in nitrate and pesticide concentrations in the South Platte River alluvial aquifer, 1993-2004. Paschke SS; Schaffrath KR; Mashburn SL J Environ Qual; 2008; 37(5 Suppl):S281-95. PubMed ID: 18765774 [TBL] [Abstract][Full Text] [Related]
12. Denitrification in a deep basalt aquifer: implications for aquifer storage and recovery. Nelson D; Melady J Ground Water; 2014; 52(3):414-23. PubMed ID: 23837490 [TBL] [Abstract][Full Text] [Related]
13. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano. Ormachea Muñoz M; Wern H; Johnsson F; Bhattacharya P; Sracek O; Thunvik R; Quintanilla J; Bundschuh J J Hazard Mater; 2013 Nov; 262():924-40. PubMed ID: 24091126 [TBL] [Abstract][Full Text] [Related]
14. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain. Brauns B; Bjerg PL; Song X; Jakobsen R J Environ Sci (China); 2016 Jul; 45():60-75. PubMed ID: 27372119 [TBL] [Abstract][Full Text] [Related]
15. Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China. Li J; Li F; Liu Q; Suzuki Y Environ Sci Process Impacts; 2014 Dec; 16(12):2764-73. PubMed ID: 25354221 [TBL] [Abstract][Full Text] [Related]
16. Assessing controls on selenium fate and transport in watersheds using the SWAT model. Neupane P; Bailey RT; Tavakoli-Kivi S Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359 [TBL] [Abstract][Full Text] [Related]
17. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China. Han D; Cao G; McCallum J; Song X Sci Total Environ; 2015 Dec; 538():539-54. PubMed ID: 26318690 [TBL] [Abstract][Full Text] [Related]
18. Using major ions and δ15N-NO3(-) to identify nitrate sources and fate in an alluvial aquifer of the Baiyangdian lake watershed, North China Plain. Wang S; Tang C; Song X; Yuan R; Wang Q; Zhang Y Environ Sci Process Impacts; 2013 Jul; 15(7):1430-43. PubMed ID: 23743546 [TBL] [Abstract][Full Text] [Related]
19. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater. Weng TN; Liu CW; Kao YH; Hsiao SS Sci Total Environ; 2017 Feb; 578():167-185. PubMed ID: 27852448 [TBL] [Abstract][Full Text] [Related]
20. Nitrate in groundwater of the United States, 1991-2003. Burow KR; Nolan BT; Rupert MG; Dubrovsky NM Environ Sci Technol; 2010 Jul; 44(13):4988-97. PubMed ID: 20540531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]