BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27320835)

  • 1. Actin Organization in Cells Responding to a Perforated Surface, Revealed by Live Imaging and Cryo-Electron Tomography.
    Jasnin M; Ecke M; Baumeister W; Gerisch G
    Structure; 2016 Jul; 24(7):1031-43. PubMed ID: 27320835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the structure of dynamic membrane-anchored actin networks: an approach using cryo-electron tomography.
    Gerisch G; Weber I
    Cell Adh Migr; 2007; 1(3):145-8. PubMed ID: 19262130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography.
    Jasnin M; Beck F; Ecke M; Fukuda Y; Martinez-Sanchez A; Baumeister W; Gerisch G
    Structure; 2019 Aug; 27(8):1211-1223.e5. PubMed ID: 31230946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells.
    Junemann A; Winterhoff M; Nordholz B; Rottner K; Eichinger L; Gräf R; Faix J
    Eur J Cell Biol; 2013; 92(6-7):201-12. PubMed ID: 23906540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments.
    Liu X; Shu S; Hong MS; Levine RL; Korn ED
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13694-9. PubMed ID: 16945900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-mediated visualization of actin and myosin filaments in the contractile membrane-cytoskeleton complex of Dictyostelium discoideum.
    Yumura S; Kitanishi-Yumura T
    Cell Struct Funct; 1990 Dec; 15(6):355-64. PubMed ID: 2085848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the polarity of actin filaments by cryo-electron tomography.
    Martins B; Sorrentino S; Chung WL; Tatli M; Medalia O; Eibauer M
    Structure; 2021 May; 29(5):488-498.e4. PubMed ID: 33476550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated segmentation of electron tomograms for a quantitative description of actin filament networks.
    Rigort A; Günther D; Hegerl R; Baum D; Weber B; Prohaska S; Medalia O; Baumeister W; Hege HC
    J Struct Biol; 2012 Jan; 177(1):135-44. PubMed ID: 21907807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic deletion of ABP-120 alters the three-dimensional organization of actin filaments in Dictyostelium pseudopods.
    Cox D; Ridsdale JA; Condeelis J; Hartwig J
    J Cell Biol; 1995 Mar; 128(5):819-35. PubMed ID: 7876307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin.
    Iwase K; Tanaka M; Hirose K; Uyeda TQP; Honda H
    PLoS One; 2017; 12(7):e0181171. PubMed ID: 28742155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron tomography reveals unbranched networks of actin filaments in lamellipodia.
    Urban E; Jacob S; Nemethova M; Resch GP; Small JV
    Nat Cell Biol; 2010 May; 12(5):429-35. PubMed ID: 20418872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of actin networks in intact filopodia.
    Medalia O; Beck M; Ecke M; Weber I; Neujahr R; Baumeister W; Gerisch G
    Curr Biol; 2007 Jan; 17(1):79-84. PubMed ID: 17208190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave Patterns in Cell Membrane and Actin Cortex Uncoupled from Chemotactic Signals.
    Gerisch G; Ecke M
    Methods Mol Biol; 2016; 1407():79-96. PubMed ID: 27271895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography.
    Martinez M; Mageswaran SK; Guérin A; Chen WD; Thompson CP; Chavin S; Soldati-Favre D; Striepen B; Chang YW
    Nat Commun; 2023 Aug; 14(1):4800. PubMed ID: 37558667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of structural dynamics of actin in class-specific myosin motility.
    Noguchi TQ; Morimatsu M; Iwane AH; Yanagida T; Uyeda TQ
    PLoS One; 2015; 10(5):e0126262. PubMed ID: 25945499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability.
    Pospich S; Kumpula EP; von der Ecken J; Vahokoski J; Kursula I; Raunser S
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10636-10641. PubMed ID: 28923924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails.
    Jasnin M; Crevenna AH
    Biophys J; 2016 Feb; 110(4):817-26. PubMed ID: 26497103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.
    Kovar DR; Pollard TD
    Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14725-30. PubMed ID: 15377785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the cooperative interaction between myosin II and actin cross-linkers mediated by actin filaments during mechanosensation.
    Luo T; Mohan K; Srivastava V; Ren Y; Iglesias PA; Robinson DN
    Biophys J; 2012 Jan; 102(2):238-47. PubMed ID: 22339860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin heavy-chain kinase A from Dictyostelium possesses a novel actin-binding domain that cross-links actin filaments.
    Russ M; Croft D; Ali O; Martinez R; Steimle PA
    Biochem J; 2006 Apr; 395(2):373-83. PubMed ID: 16372899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.