BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 27321189)

  • 21. Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice.
    Izu Y; Ansorge HL; Zhang G; Soslowsky LJ; Bonaldo P; Chu ML; Birk DE
    Matrix Biol; 2011 Jan; 30(1):53-61. PubMed ID: 20951202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening.
    Liu J; Das D; Yang F; Schwartz AG; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2018 Oct; 80():217-227. PubMed ID: 30240954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons.
    Svensson RB; Smith ST; Moyer PJ; Magnusson SP
    Acta Biomater; 2018 Apr; 70():270-280. PubMed ID: 29447959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.
    Baldwin SJ; Sampson J; Peacock CJ; Martin ML; Veres SP; Lee JM; Kreplak L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103849. PubMed ID: 32501220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level.
    Shepherd JH; Riley GP; Screen HR
    J Mech Behav Biomed Mater; 2014 Oct; 38():163-72. PubMed ID: 25001495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical overload decreases the thermal stability of collagen in an in vitro tensile overload tendon model.
    Willett TL; Labow RS; Lee JM
    J Orthop Res; 2008 Dec; 26(12):1605-10. PubMed ID: 18524005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different crimp patterns in collagen fibrils relate to the subfibrillar arrangement.
    Franchi M; Raspanti M; Dell'Orbo C; Quaranta M; De Pasquale V; Ottani V; Ruggeri A
    Connect Tissue Res; 2008; 49(2):85-91. PubMed ID: 18382894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of the collagen fibril diameter in the equine superficial digital flexor tendon in horses by decorin.
    Watanabe T; Hosaka Y; Yamamoto E; Ueda H; Sugawara K; Takahashi H; Takehana K
    J Vet Med Sci; 2005 Sep; 67(9):855-60. PubMed ID: 16210795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functionally distinct tendons have different biomechanical, biochemical and histological responses to in vitro unloading.
    Choi RK; Smith MM; Smith S; Little CB; Clarke EC
    J Biomech; 2019 Oct; 95():109321. PubMed ID: 31466714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon.
    Cribb AM; Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):423-8. PubMed ID: 7592005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen denaturation is initiated upon tissue yield in both positional and energy-storing tendons.
    Lin AH; Allan AN; Zitnay JL; Kessler JL; Yu SM; Weiss JA
    Acta Biomater; 2020 Dec; 118():153-160. PubMed ID: 33035697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM).
    Spiesz EM; Thorpe CT; Thurner PJ; Screen HRC
    Acta Biomater; 2018 Apr; 70():281-292. PubMed ID: 29409868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness.
    Fessel G; Li Y; Diederich V; Guizar-Sicairos M; Schneider P; Sell DR; Monnier VM; Snedeker JG
    PLoS One; 2014; 9(11):e110948. PubMed ID: 25364829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collagen XI regulates the acquisition of collagen fibril structure, organization and functional properties in tendon.
    Sun M; Luo EY; Adams SM; Adams T; Ye Y; Shetye SS; Soslowsky LJ; Birk DE
    Matrix Biol; 2020 Dec; 94():77-94. PubMed ID: 32950601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collagen fibrils: nanoscale ropes.
    Bozec L; van der Heijden G; Horton M
    Biophys J; 2007 Jan; 92(1):70-5. PubMed ID: 17028135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development.
    Zhang G; Ezura Y; Chervoneva I; Robinson PS; Beason DP; Carine ET; Soslowsky LJ; Iozzo RV; Birk DE
    J Cell Biochem; 2006 Aug; 98(6):1436-49. PubMed ID: 16518859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
    Zitnay JL; Lin AH; Weiss JA
    Acta Biomater; 2021 Oct; 134():435-442. PubMed ID: 34314889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.