These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27321911)

  • 61. Biophysical analysis of lipidic nanoparticles.
    Rozo AJ; Cox MH; Devitt A; Rothnie AJ; Goddard AD
    Methods; 2020 Aug; 180():45-55. PubMed ID: 32387313
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single-Molecule Analysis with Solid-State Nanopores.
    Albrecht T
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):371-387. PubMed ID: 30707594
    [TBL] [Abstract][Full Text] [Related]  

  • 63. DNA nanopore translocation in glutamate solutions.
    Plesa C; van Loo N; Dekker C
    Nanoscale; 2015 Aug; 7(32):13605-9. PubMed ID: 26206066
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly.
    Kumar S; Wittenberg NJ; Oh SH
    Anal Chem; 2013 Jan; 85(2):971-7. PubMed ID: 23214989
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Up and down translocation events and electric double-layer formation inside solid-state nanopores.
    Zanjani MB; Engelke RE; Lukes JR; Meunier V; Drndić M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022715. PubMed ID: 26382440
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simultaneous Multipass Resistive-Pulse Sensing and Fluorescence Imaging of Liposomes.
    Schmeltzer AJ; Peterson EM; Harris JM; Lathrop DK; German SR; White HS
    ACS Nano; 2024 Mar; 18(9):7241-7252. PubMed ID: 38377597
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Observing Transient Bipolar Electrochemical Coupling on Single Nanoparticles Translocating through a Nanopore.
    Han C; Hao R; Fan Y; Edwards MA; Gao H; Zhang B
    Langmuir; 2019 Jun; 35(22):7180-7190. PubMed ID: 31074628
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Temporal Response of Ionic Current Blockade in Solid-State Nanopores.
    Tsutsui M; Yokota K; Arima A; Tonomura W; Taniguchi M; Washio T; Kawai T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34751-34757. PubMed ID: 30204405
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of Positively Charged Lipid Shell Microbubbles with Tunable Resistive Pulse Sensing (TRPS) Method: A Technical Note.
    Manta S; Delalande A; Bessodes M; Bureau MF; Scherman D; Pichon C; Mignet N
    Ultrasound Med Biol; 2016 Feb; 42(2):624-30. PubMed ID: 26653937
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identifying Single Particles in Air Using a 3D-Integrated Solid-State Pore.
    Tsutsui M; Yokota K; Yoshida T; Hotehama C; Kowada H; Esaki Y; Taniguchi M; Washio T; Kawai T
    ACS Sens; 2019 Mar; 4(3):748-755. PubMed ID: 30788967
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative Profiling of Nanoscale Liposome Deformation by a Localized Surface Plasmon Resonance Sensor.
    Jackman JA; Yorulmaz Avsar S; Ferhan AR; Li D; Park JH; Zhdanov VP; Cho NJ
    Anal Chem; 2017 Jan; 89(2):1102-1109. PubMed ID: 27983791
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Discriminating single-bacterial shape using low-aspect-ratio pores.
    Tsutsui M; Yoshida T; Yokota K; Yasaki H; Yasui T; Arima A; Tonomura W; Nagashima K; Yanagida T; Kaji N; Taniguchi M; Washio T; Baba Y; Kawai T
    Sci Rep; 2017 Dec; 7(1):17371. PubMed ID: 29234023
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids.
    Harms ZD; Mogensen KB; Nunes PS; Zhou K; Hildenbrand BW; Mitra I; Tan Z; Zlotnick A; Kutter JP; Jacobson SC
    Anal Chem; 2011 Dec; 83(24):9573-8. PubMed ID: 22029283
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Controlling pH-regulated bionanoparticles translocation through nanopores with polyelectrolyte brushes.
    Yeh LH; Zhang M; Joo SW; Qian S; Hsu JP
    Anal Chem; 2012 Nov; 84(21):9615-22. PubMed ID: 23035927
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Resistive-Pulse Sensing and Surface Charge Analysis of a Single Nanoparticle Collision at a Conical Glass Nanopore.
    Zhou Y; Wang D; Li C; Hu P; Jin Y
    Anal Chem; 2019 Jun; 91(12):7648-7653. PubMed ID: 31091072
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Applications of tunable resistive pulse sensing.
    Weatherall E; Willmott GR
    Analyst; 2015 May; 140(10):3318-34. PubMed ID: 25738184
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Resistive-pulse DNA detection with a conical nanopore sensor.
    Harrell CC; Choi Y; Horne LP; Baker LA; Siwy ZS; Martin CR
    Langmuir; 2006 Dec; 22(25):10837-43. PubMed ID: 17129068
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pressure-Biased Nanopores for Excluded Volume Metrology, Lipid Biomechanics, and Cell-Adhesion Rupturing.
    Sharma V; Freedman KJ
    ACS Nano; 2021 Nov; 15(11):17947-17958. PubMed ID: 34739757
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of fabrication-dependent shape and composition of solid-state nanopores on single nanoparticle detection.
    Liu S; Yuzvinsky TD; Schmidt H
    ACS Nano; 2013 Jun; 7(6):5621-7. PubMed ID: 23697604
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Estimation of Shape, Volume, and Dipole Moment of Individual Proteins Freely Transiting a Synthetic Nanopore.
    Houghtaling J; Ying C; Eggenberger OM; Fennouri A; Nandivada S; Acharjee M; Li J; Hall AR; Mayer M
    ACS Nano; 2019 May; 13(5):5231-5242. PubMed ID: 30995394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.