These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27321911)

  • 81. Resistive-Pulse Sensing Inside Single Living Cells.
    Pan R; Hu K; Jia R; Rotenberg SA; Jiang D; Mirkin MV
    J Am Chem Soc; 2020 Mar; 142(12):5778-5784. PubMed ID: 32119540
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Optimal voltage for nanoparticle detection with thin nanopores.
    Qiu Y
    Analyst; 2018 Oct; 143(19):4638-4645. PubMed ID: 30167601
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Proximal Capture Dynamics for a Single Biological Nanopore Sensor.
    Pederson ED; Barbalas J; Drown BS; Culbertson MJ; Keranen Burden LM; Kasianowicz JJ; Burden DL
    J Phys Chem B; 2015 Aug; 119(33):10448-55. PubMed ID: 26203555
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores.
    Lin CY; Yeh LH; Hsu JP; Tseng S
    Small; 2015 Sep; 11(35):4594-602. PubMed ID: 26148458
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Nanopore analysis of amyloid fibrils formed by lysozyme aggregation.
    Martyushenko N; Bell NA; Lamboll RD; Keyser UF
    Analyst; 2015 Jul; 140(14):4882-6. PubMed ID: 25994201
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A hybrid resistive pulse-optical detection platform for microfluidic experiments.
    Hinkle P; Westerhof TM; Qiu Y; Mallin DJ; Wallace ML; Nelson EL; Taborek P; Siwy ZS
    Sci Rep; 2017 Aug; 7(1):10173. PubMed ID: 28860641
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Quantitative estimation of electro-osmosis force on charged particles inside a borosilicate resistive-pulse sensor.
    Ghobadi M; Yuqian Zhang ; Rana A; Esfahani ET; Esfandiari L
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4228-4231. PubMed ID: 28269215
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes.
    Yeh LH; Zhang M; Hu N; Joo SW; Qian S; Hsu JP
    Nanoscale; 2012 Aug; 4(16):5169-77. PubMed ID: 22802160
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections.
    Arima A; Tsutsui M; Yoshida T; Tatematsu K; Yamazaki T; Yokota K; Kuroda S; Washio T; Baba Y; Kawai T
    ACS Sens; 2020 Nov; 5(11):3398-3403. PubMed ID: 32933253
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A novel microfluidic resistive pulse sensor with multiple voltage input channels and a side sensing gate for particle and cell detection.
    Zhou T; Song Y; Yuan Y; Li D
    Anal Chim Acta; 2019 Apr; 1052():113-123. PubMed ID: 30685029
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization.
    Ali M; Ramirez P; Nguyen HQ; Nasir S; Cervera J; Mafe S; Ensinger W
    ACS Nano; 2012 Apr; 6(4):3631-40. PubMed ID: 22458890
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Surface charge density determination of single conical nanopores based on normalized ion current rectification.
    Liu J; Kvetny M; Feng J; Wang D; Wu B; Brown W; Wang G
    Langmuir; 2012 Jan; 28(2):1588-95. PubMed ID: 22182684
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Characterization of Extracellular Vesicles by Resistive-Pulse Sensing on In-Plane Multipore Nanofluidic Devices.
    Young TW; Kappler MP; Hockaden NM; Carpenter RL; Jacobson SC
    Anal Chem; 2023 Nov; 95(45):16710-16716. PubMed ID: 37916500
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson-Boltzmann approach.
    Ai Y; Qian S
    Electrophoresis; 2011 Apr; 32(9):996-1005. PubMed ID: 21455912
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Electrically Tunable Quenching of DNA Fluctuations in Biased Solid-State Nanopores.
    Qiu H; Girdhar A; Schulten K; Leburton JP
    ACS Nano; 2016 Apr; 10(4):4482-8. PubMed ID: 26998639
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Field effect regulation of DNA translocation through a nanopore.
    Ai Y; Liu J; Zhang B; Qian S
    Anal Chem; 2010 Oct; 82(19):8217-25. PubMed ID: 20804162
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Pulse Size Distributions in Tunable Resistive Pulse Sensing.
    Weatherall E; Hauer P; Vogel R; Willmott GR
    Anal Chem; 2016 Sep; 88(17):8648-56. PubMed ID: 27469286
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Single-nanoparticle detection using a low-aspect-ratio pore.
    Tsutsui M; Hongo S; He Y; Taniguchi M; Gemma N; Kawai T
    ACS Nano; 2012 Apr; 6(4):3499-505. PubMed ID: 22424475
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Solid-State Nanopore Time-of-Flight Mass Spectrometer.
    Tsutsui M; Yokota K; Arima A; He Y; Kawai T
    ACS Sens; 2019 Nov; 4(11):2974-2979. PubMed ID: 31576750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.