These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27322068)

  • 1. A family of metal-dependent phosphatases implicated in metabolite damage-control.
    Huang L; Khusnutdinova A; Nocek B; Brown G; Xu X; Cui H; Petit P; Flick R; Zallot R; Balmant K; Ziemak MJ; Shanklin J; de Crécy-Lagard V; Fiehn O; Gregory JF; Joachimiak A; Savchenko A; Yakunin AF; Hanson AD
    Nat Chem Biol; 2016 Aug; 12(8):621-7. PubMed ID: 27322068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human ARMT1 structure and substrate specificity indicates that it is a DUF89 family damage-control phosphatase.
    Dennis TN; Kenjić N; Kang AS; Lowenson JD; Kirkwood JS; Clarke SG; Perry JJP
    J Struct Biol; 2020 Oct; 212(1):107576. PubMed ID: 32682077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase.
    Reddy VS; Singh AK; Rajasekharan R
    J Biol Chem; 2008 Apr; 283(14):8846-54. PubMed ID: 18234677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function.
    Manford A; Xia T; Saxena AK; Stefan C; Hu F; Emr SD; Mao Y
    EMBO J; 2010 May; 29(9):1489-98. PubMed ID: 20389282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of a phosphatase domain within yeast general transcription factor IIIC.
    Taylor NM; Glatt S; Hennrich ML; von Scheven G; Grötsch H; Fernández-Tornero C; Rybin V; Gavin AC; Kolb P; Müller CW
    J Biol Chem; 2013 May; 288(21):15110-20. PubMed ID: 23569204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and Functional Characterization of a Yeast Sugar Alcohol Phosphatase.
    Xu YF; Lu W; Chen JC; Johnson SA; Gibney PA; Thomas DG; Brown G; May AL; Campagna SR; Yakunin AF; Botstein D; Rabinowitz JD
    ACS Chem Biol; 2018 Oct; 13(10):3011-3020. PubMed ID: 30240188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes.
    Ho CK; Martins A; Shuman S
    J Virol; 2000 Jun; 74(12):5486-94. PubMed ID: 10823853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dcr2p phosphatase destabilizes Sic1p in Saccharomyces cerevisiae.
    Pathak R; Blank HM; Guo J; Ellis S; Polymenis M
    Biochem Biophys Res Commun; 2007 Sep; 361(3):700-4. PubMed ID: 17673172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae.
    Guillemain G; Ma E; Mauger S; Miron S; Thai R; Guérois R; Ochsenbein F; Marsolier-Kergoat MC
    Mol Cell Biol; 2007 May; 27(9):3378-89. PubMed ID: 17325030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric activation of the phosphoinositide phosphatase Sac1 by anionic phospholipids.
    Zhong S; Hsu F; Stefan CJ; Wu X; Patel A; Cosgrove MS; Mao Y
    Biochemistry; 2012 Apr; 51(15):3170-7. PubMed ID: 22452743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Guardian Angel Phosphatase for Mainline Carbon Metabolism.
    Beaudoin GA; Hanson AD
    Trends Biochem Sci; 2016 Nov; 41(11):893-894. PubMed ID: 27544441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane topology of sphingoid long-chain base-1-phosphate phosphatase, Lcb3p.
    Kihara A; Sano T; Iwaki S; Igarashi Y
    Genes Cells; 2003 Jun; 8(6):525-35. PubMed ID: 12786943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.
    Tani M; Kuge O
    Yeast; 2014 Apr; 31(4):145-58. PubMed ID: 24578286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphatase system in Saccharomyces cerevisiae.
    Oshima Y
    Genes Genet Syst; 1997 Dec; 72(6):323-34. PubMed ID: 9544531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly specific phosphatase that acts on ADP-ribose 1''-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae.
    Shull NP; Spinelli SL; Phizicky EM
    Nucleic Acids Res; 2005; 33(2):650-60. PubMed ID: 15684411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity.
    Tuleva B; Vasileva-Tonkova E; Galabova D
    FEMS Microbiol Lett; 1998 Apr; 161(1):139-44. PubMed ID: 9561742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis.
    Srinivasan S; Seaman M; Nemoto Y; Daniell L; Suchy SF; Emr S; De Camilli P; Nussbaum R
    Eur J Cell Biol; 1997 Dec; 74(4):350-60. PubMed ID: 9438131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian inositol polyphosphate 5-phosphatase II can compensate for the absence of all three yeast Sac1-like-domain-containing 5-phosphatases.
    O'Malley CJ; McColl BK; Kong AM; Ellis SL; Wijayaratnam AP; Sambrook J; Mitchell CA
    Biochem J; 2001 May; 355(Pt 3):805-17. PubMed ID: 11311145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synaptojanin-like protein Inp53/Sjl3 functions with clathrin in a yeast TGN-to-endosome pathway distinct from the GGA protein-dependent pathway.
    Ha SA; Torabinejad J; DeWald DB; Wenk MR; Lucast L; De Camilli P; Newitt RA; Aebersold R; Nothwehr SF
    Mol Biol Cell; 2003 Apr; 14(4):1319-33. PubMed ID: 12686590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.