These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27322211)

  • 1. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
    Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR
    Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics of drug sensitivity in bladder cancer: an integrated resource for pharmacogenomic analysis in bladder cancer.
    Ansari AA; Park I; Kim I; Park S; Ahn SM; Lee JL
    BMC Med Genomics; 2018 Oct; 11(1):88. PubMed ID: 30285760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IPCT: Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and Tissues.
    Shoaib M; Ansari AA; Haq F; Ahn SM
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30813377
    [No Abstract]   [Full Text] [Related]  

  • 5. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GDSCTools for mining pharmacogenomic interactions in cancer.
    Cokelaer T; Chen E; Iorio F; Menden MP; Lightfoot H; Saez-Rodriguez J; Garnett MJ
    Bioinformatics; 2018 Apr; 34(7):1226-1228. PubMed ID: 29186349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting inconsistency in large pharmacogenomic studies.
    Safikhani Z; Smirnov P; Freeman M; El-Hachem N; She A; Rene Q; Goldenberg A; Birkbak NJ; Hatzis C; Shi L; Beck AH; Aerts HJWL; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():2333. PubMed ID: 28928933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PharmacoDB 2.0: improving scalability and transparency of in vitro pharmacogenomics analysis.
    Feizi N; Nair SK; Smirnov P; Beri G; Eeles C; Esfahani PN; Nakano M; Tkachuk D; Mammoliti A; Gorobets E; Mer AS; Lin E; Yu Y; Martin S; Hafner M; Haibe-Kains B
    Nucleic Acids Res; 2022 Jan; 50(D1):D1348-D1357. PubMed ID: 34850112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
    Yang W; Soares J; Greninger P; Edelman EJ; Lightfoot H; Forbes S; Bindal N; Beare D; Smith JA; Thompson IR; Ramaswamy S; Futreal PA; Haber DA; Stratton MR; Benes C; McDermott U; Garnett MJ
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D955-61. PubMed ID: 23180760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic pharmacogenomics in cancer.
    Ikediobi ON
    Pharmacogenomics J; 2008 Oct; 8(5):305-14. PubMed ID: 18679398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacogenomic agreement between two cancer cell line data sets.
    ;
    Nature; 2015 Dec; 528(7580):84-7. PubMed ID: 26570998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacogenetics and pharmacogenomics as new tools to optimise cancer chemotherapy.
    Robert J
    J Chemother; 2004 Nov; 16 Suppl 4():22-4. PubMed ID: 15688604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of transfer learning for cancer drug sensitivity prediction.
    Dhruba SR; Rahman R; Matlock K; Ghosh S; Pal R
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):497. PubMed ID: 30591023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of pharmacogenomic agreement.
    Safikhani Z; El-Hachem N; Quevedo R; Smirnov P; Goldenberg A; Juul Birkbak N; Mason C; Hatzis C; Shi L; Aerts HJ; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():825. PubMed ID: 27408686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise group sparse regression (SGSR): gene-set-based pharmacogenomic predictive models with stepwise selection of functional priors.
    Jang IS; Dienstmann R; Margolin AA; Guinney J
    Pac Symp Biocomput; 2015; 20():32-43. PubMed ID: 25592566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the DruGeVar Database in Cancer Genomics and Pharmacogenomics.
    Sarris K; Komianou A; Patrinos GP; Katsila T
    Public Health Genomics; 2017; 20(2):142-147. PubMed ID: 28704821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AICM: A Genuine Framework for Correcting Inconsistency Between Large Pharmacogenomics Datasets.
    Hu ZT; Ye Y; Newbury PA; Huang H; Chen B
    Pac Symp Biocomput; 2019; 24():248-259. PubMed ID: 30864327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Link synthetic lethality to drug sensitivity of cancer cells.
    Wang R; Han Y; Zhao Z; Yang F; Chen T; Zhou W; Wang X; Qi L; Zhao W; Guo Z; Gu Y
    Brief Bioinform; 2019 Jul; 20(4):1295-1307. PubMed ID: 29300844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.