BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27322211)

  • 1. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
    Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR
    Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics of drug sensitivity in bladder cancer: an integrated resource for pharmacogenomic analysis in bladder cancer.
    Ansari AA; Park I; Kim I; Park S; Ahn SM; Lee JL
    BMC Med Genomics; 2018 Oct; 11(1):88. PubMed ID: 30285760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IPCT: Integrated Pharmacogenomic Platform of Human Cancer Cell Lines and Tissues.
    Shoaib M; Ansari AA; Haq F; Ahn SM
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30813377
    [No Abstract]   [Full Text] [Related]  

  • 5. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GDSCTools for mining pharmacogenomic interactions in cancer.
    Cokelaer T; Chen E; Iorio F; Menden MP; Lightfoot H; Saez-Rodriguez J; Garnett MJ
    Bioinformatics; 2018 Apr; 34(7):1226-1228. PubMed ID: 29186349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting inconsistency in large pharmacogenomic studies.
    Safikhani Z; Smirnov P; Freeman M; El-Hachem N; She A; Rene Q; Goldenberg A; Birkbak NJ; Hatzis C; Shi L; Beck AH; Aerts HJWL; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():2333. PubMed ID: 28928933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PharmacoDB 2.0: improving scalability and transparency of in vitro pharmacogenomics analysis.
    Feizi N; Nair SK; Smirnov P; Beri G; Eeles C; Esfahani PN; Nakano M; Tkachuk D; Mammoliti A; Gorobets E; Mer AS; Lin E; Yu Y; Martin S; Hafner M; Haibe-Kains B
    Nucleic Acids Res; 2022 Jan; 50(D1):D1348-D1357. PubMed ID: 34850112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
    Yang W; Soares J; Greninger P; Edelman EJ; Lightfoot H; Forbes S; Bindal N; Beare D; Smith JA; Thompson IR; Ramaswamy S; Futreal PA; Haber DA; Stratton MR; Benes C; McDermott U; Garnett MJ
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D955-61. PubMed ID: 23180760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic pharmacogenomics in cancer.
    Ikediobi ON
    Pharmacogenomics J; 2008 Oct; 8(5):305-14. PubMed ID: 18679398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacogenomic agreement between two cancer cell line data sets.
    ;
    Nature; 2015 Dec; 528(7580):84-7. PubMed ID: 26570998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacogenetics and pharmacogenomics as new tools to optimise cancer chemotherapy.
    Robert J
    J Chemother; 2004 Nov; 16 Suppl 4():22-4. PubMed ID: 15688604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of transfer learning for cancer drug sensitivity prediction.
    Dhruba SR; Rahman R; Matlock K; Ghosh S; Pal R
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):497. PubMed ID: 30591023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of pharmacogenomic agreement.
    Safikhani Z; El-Hachem N; Quevedo R; Smirnov P; Goldenberg A; Juul Birkbak N; Mason C; Hatzis C; Shi L; Aerts HJ; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():825. PubMed ID: 27408686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise group sparse regression (SGSR): gene-set-based pharmacogenomic predictive models with stepwise selection of functional priors.
    Jang IS; Dienstmann R; Margolin AA; Guinney J
    Pac Symp Biocomput; 2015; 20():32-43. PubMed ID: 25592566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the DruGeVar Database in Cancer Genomics and Pharmacogenomics.
    Sarris K; Komianou A; Patrinos GP; Katsila T
    Public Health Genomics; 2017; 20(2):142-147. PubMed ID: 28704821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inconsistency in large pharmacogenomic studies.
    Haibe-Kains B; El-Hachem N; Birkbak NJ; Jin AC; Beck AH; Aerts HJ; Quackenbush J
    Nature; 2013 Dec; 504(7480):389-93. PubMed ID: 24284626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AICM: A Genuine Framework for Correcting Inconsistency Between Large Pharmacogenomics Datasets.
    Hu ZT; Ye Y; Newbury PA; Huang H; Chen B
    Pac Symp Biocomput; 2019; 24():248-259. PubMed ID: 30864327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.