These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27322264)

  • 1. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).
    Cruz H; Eckert M; Meneses J; Martínez JF
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic forest-fire measuring using ground stations and Unmanned Aerial Systems.
    Martínez-de Dios JR; Merino L; Caballero F; Ollero A
    Sensors (Basel); 2011; 11(6):6328-53. PubMed ID: 22163958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Detection of Forest Fire Using Mixed Learning Techniques and UAV.
    Kasyap VL; Sumathi D; Alluri K; Reddy Ch P; Thilakarathne N; Shafi RM
    Comput Intell Neurosci; 2022; 2022():3170244. PubMed ID: 35855796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saliency Detection and Deep Learning-Based Wildfire Identification in UAV Imagery.
    Zhao Y; Ma J; Li X; Zhang J
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture.
    Sassu A; Gambella F; Ghiani L; Mercenaro L; Caria M; Pazzona AL
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery.
    Padró JC; Carabassa V; Balagué J; Brotons L; Alcañiz JM; Pons X
    Sci Total Environ; 2019 Mar; 657():1602-1614. PubMed ID: 30677925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges.
    Fernández-Guisuraga JM; Sanz-Ablanedo E; Suárez-Seoane S; Calvo L
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.
    Allison RS; Johnston JM; Craig G; Jennings S
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Real-Time Fire Detection Method from Video with Multifeature Fusion.
    Gong F; Li C; Gong W; Li X; Yuan X; Ma Y; Song T
    Comput Intell Neurosci; 2019; 2019():1939171. PubMed ID: 31396269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Object Detection for Unmanned Aerial Systems (UASs)-Based Inspections of Construction Stormwater Practices.
    Kazaz B; Poddar S; Arabi S; Perez MA; Sharma A; Whitman JB
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibrating the Severity of Forest Defoliation by Pine Processionary Moth with Landsat and UAV Imagery.
    Otsu K; Pla M; Vayreda J; Brotons L
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms.
    Hassanein M; Lari Z; El-Sheimy N
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems.
    Sousa MJ; Moutinho A; Almeida M
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.
    Ortega-Terol D; Hernandez-Lopez D; Ballesteros R; Gonzalez-Aguilera D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29036930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing 802.15.4 Outdoor IoT Sensor Networks for Aerial Data Collection.
    Nekrasov M; Allen R; Artamonova I; Belding E
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31395827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturity Levels of Public Safety Applications using Unmanned Aerial Systems: a Review.
    Stampa M; Sutorma A; Jahn U; Thiem J; Wolff C; Röhrig C
    J Intell Robot Syst; 2021; 103(1):16. PubMed ID: 34456505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Detecting fire smoke based on the multispectral image].
    Wei YZ; Zhang SW; Liu YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1061-4. PubMed ID: 20545162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiological Mapping of Post-Disaster Nuclear Environments Using Fixed-Wing Unmanned Aerial Systems: A Study From Chornobyl.
    Connor DT; Wood K; Martin PG; Goren S; Megson-Smith D; Verbelen Y; Chyzhevskyi I; Kirieiev S; Smith NT; Richardson T; Scott TB
    Front Robot AI; 2019; 6():149. PubMed ID: 33501164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Video Surveillance-Based Fire and Smoke Classification Using Attentional Feature Map in Capsule Networks.
    Shakhnoza M; Sabina U; Sevara M; Cho YI
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.