These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 27322306)
1. Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models. Chen F; Chen S; Ma X Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27322306 [TBL] [Abstract][Full Text] [Related]
2. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Chen F; Chen S; Ma X J Safety Res; 2018 Jun; 65():153-159. PubMed ID: 29776524 [TBL] [Abstract][Full Text] [Related]
3. Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data. Chen F; Ma X; Chen S; Yang L Int J Environ Res Public Health; 2016 Oct; 13(11):. PubMed ID: 27792209 [TBL] [Abstract][Full Text] [Related]
4. Identifying crash-prone traffic conditions under different weather on freeways. Xu C; Wang W; Liu P J Safety Res; 2013 Sep; 46():135-44. PubMed ID: 23932695 [TBL] [Abstract][Full Text] [Related]
5. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data. Yu R; Abdel-Aty M Accid Anal Prev; 2014 Jan; 62():161-7. PubMed ID: 24172082 [TBL] [Abstract][Full Text] [Related]
6. The negative Binomial-Lindley model with Time-Dependent Parameters: Accounting for temporal variations and excess zero observations in crash data. Dzinyela R; Shirazi M; Das S; Lord D Accid Anal Prev; 2024 Nov; 207():107711. PubMed ID: 39084005 [TBL] [Abstract][Full Text] [Related]
7. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study. Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890 [No Abstract] [Full Text] [Related]
8. Bayesian random effect models incorporating real-time weather and traffic data to investigate mountainous freeway hazardous factors. Yu R; Abdel-Aty M; Ahmed M Accid Anal Prev; 2013 Jan; 50():371-6. PubMed ID: 22658460 [TBL] [Abstract][Full Text] [Related]
9. Refined-scale panel data crash rate analysis using random-effects tobit model. Chen F; Ma X; Chen S Accid Anal Prev; 2014 Dec; 73():323-32. PubMed ID: 25269099 [TBL] [Abstract][Full Text] [Related]
10. Exploring the effects of roadway characteristics on the frequency and severity of head-on crashes: case studies from Malaysian federal roads. Hosseinpour M; Yahaya AS; Sadullah AF Accid Anal Prev; 2014 Jan; 62():209-22. PubMed ID: 24172088 [TBL] [Abstract][Full Text] [Related]
11. Investigating factors of crash frequency with random effects and random parameters models: New insights from Chinese freeway study. Hou Q; Tarko AP; Meng X Accid Anal Prev; 2018 Nov; 120():1-12. PubMed ID: 30075358 [TBL] [Abstract][Full Text] [Related]
12. A negative binomial Lindley approach considering spatiotemporal effects for modeling traffic crash frequency with excess zeros. Wang W; Yang Y; Yang X; Gayah VV; Wang Y; Tang J; Yuan Z Accid Anal Prev; 2024 Nov; 207():107741. PubMed ID: 39137658 [TBL] [Abstract][Full Text] [Related]
13. Influence of curbs on traffic crash frequency on high-speed roadways. Jiang X; Yan X; Huang B; Richards SH Traffic Inj Prev; 2011 Aug; 12(4):412-21. PubMed ID: 21823949 [TBL] [Abstract][Full Text] [Related]
14. Applying a random parameters Negative Binomial Lindley model to examine multi-vehicle crashes along rural mountainous highways in Malaysia. Rusli R; Haque MM; Afghari AP; King M Accid Anal Prev; 2018 Oct; 119():80-90. PubMed ID: 30007211 [TBL] [Abstract][Full Text] [Related]
15. Investigating built environment and traffic flow impact on crash frequency in urban road networks. Xiao D; Ding H; Sze NN; Zheng N Accid Anal Prev; 2024 Jun; 201():107561. PubMed ID: 38583284 [TBL] [Abstract][Full Text] [Related]
16. Identifying high crash risk segments in rural roads using ensemble decision tree-based models. Iranmanesh M; Seyedabrishami S; Moridpour S Sci Rep; 2022 Nov; 12(1):20024. PubMed ID: 36414672 [TBL] [Abstract][Full Text] [Related]
17. Crash risk analysis during fog conditions using real-time traffic data. Wu Y; Abdel-Aty M; Lee J Accid Anal Prev; 2018 May; 114():4-11. PubMed ID: 28576419 [TBL] [Abstract][Full Text] [Related]
19. Micro-level safety risk assessment model for a two-lane heterogeneous traffic environment in a developing country: A comparative crash probability modeling approach. Mahmud SMS; Ferreira L; Hoque MS; Tavassoli A J Safety Res; 2019 Jun; 69():125-134. PubMed ID: 31235224 [TBL] [Abstract][Full Text] [Related]
20. Temporal-spatial evolution analysis of severe traffic violations using three functional forms of models considering the diurnal variation of meteorology. Wang C; He J; Yan X; Zhang C; Chen Y; Ye Y Accid Anal Prev; 2022 Sep; 174():106731. PubMed ID: 35696853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]