BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2732236)

  • 1. Reactions of the protein radical in peroxide-treated myoglobin. Formation of a heme-protein cross-link.
    Catalano CE; Choe YS; Ortiz de Montellano PR
    J Biol Chem; 1989 Jun; 264(18):10534-41. PubMed ID: 2732236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The myoglobin protein radical. Coupling of Tyr-103 to Tyr-151 in the H2O2-mediated cross-linking of sperm whale myoglobin.
    Tew D; Ortiz de Montellano PR
    J Biol Chem; 1988 Nov; 263(33):17880-6. PubMed ID: 3182873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential additions to the myoglobin prosthetic heme group. Oxidative gamma-meso substitution by alkylhydrazines.
    Choe YS; Ortiz de Montellano PR
    J Biol Chem; 1991 May; 266(13):8523-30. PubMed ID: 1850746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and mechanism of formation of peroxide-induced heme to protein cross-linking in myoglobin.
    Reeder BJ; Svistunenko DA; Sharpe MA; Wilson MT
    Biochemistry; 2002 Jan; 41(1):367-75. PubMed ID: 11772036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical.
    Rao SI; Wilks A; Hamberg M; Ortiz de Montellano PR
    J Biol Chem; 1994 Mar; 269(10):7210-6. PubMed ID: 8125933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent crosslinking of the heme prosthetic group to myoglobin by H2O2: toxicological implications.
    Osawa Y; Williams MS
    Free Radic Biol Med; 1996; 21(1):35-41. PubMed ID: 8791091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism-based covalent bonding of the heme prosthetic group to its apoprotein during the reductive debromination of BrCCl3 by myoglobin.
    Osawa Y; Martin BM; Griffin PR; Yates JR; Shabanowitz J; Hunt DF; Murphy AC; Chen L; Cotter RJ; Pohl LR
    J Biol Chem; 1990 Jun; 265(18):10340-6. PubMed ID: 2355004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.
    Wright PJ; English AM
    J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of heme-propionate side chains to structure and function of myoglobin: chemical approach by artificially created prosthetic groups.
    Hayashi T; Matsuo T; Hitomi Y; Okawa K; Suzuki A; Shiro Y; Iizuka T; Hisaeda Y; Ogoshi H
    J Inorg Biochem; 2002 Jul; 91(1):94-100. PubMed ID: 12121766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme oxygenase active-site residues identified by heme-protein cross-linking during reduction of CBrCl3.
    Wilks A; Medzihradszky KF; Ortiz de Montellano PR
    Biochemistry; 1998 Mar; 37(9):2889-96. PubMed ID: 9485440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced lipid oxidation by oxidatively modified myoglobin: role of protein-bound heme.
    Vuletich JL; Osawa Y; Aviram M
    Biochem Biophys Res Commun; 2000 Mar; 269(3):647-51. PubMed ID: 10720470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximal ligand control of heme iron coordination structure and reactivity with hydrogen peroxide: investigations of the myoglobin cavity mutant H93G with unnatural oxygen donor proximal ligands.
    Roach MP; Puspita WJ; Watanabe Y
    J Inorg Biochem; 2000 Aug; 81(3):173-82. PubMed ID: 11051562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme protein radicals: formation, fate, and biological consequences.
    Giulivi C; Cadenas E
    Free Radic Biol Med; 1998 Jan; 24(2):269-79. PubMed ID: 9433902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction of ascorbic acid with different heme iron redox states of myoglobin. Antioxidant and prooxidant aspects.
    Giulivi C; Cadenas E
    FEBS Lett; 1993 Oct; 332(3):287-90. PubMed ID: 8405472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-transfer chemistry of Ru-linker-(heme)-modified myoglobin: rapid intraprotein reduction of a photogenerated porphyrin cation radical.
    Immoos CE; Di Bilio AJ; Cohen MS; Van der Veer W; Gray HB; Farmer PJ
    Inorg Chem; 2004 Jun; 43(12):3593-6. PubMed ID: 15180412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the myoglobin containing octaethylhemin as a prosthetic group.
    Neya S; Funasaki N; Imai K
    J Biol Chem; 1988 Jun; 263(18):8810-5. PubMed ID: 3379047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoglobin-induced oxidative damage: evidence for radical transfer from oxidized myoglobin to other proteins and antioxidants.
    Irwin JA; Ostdal H; Davies MJ
    Arch Biochem Biophys; 1999 Feb; 362(1):94-104. PubMed ID: 9917333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra- and intermolecular transfers of protein radicals in the reactions of sperm whale myoglobin with hydrogen peroxide.
    Lardinois OM; Ortiz de Montellano PR
    J Biol Chem; 2003 Sep; 278(38):36214-26. PubMed ID: 12855712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desferrioxamine inhibits production of cytotoxic heme to protein cross-linked myoglobin: a mechanism to protect against oxidative stress without iron chelation.
    Reeder BJ; Wilson MT
    Chem Res Toxicol; 2005 Jun; 18(6):1004-11. PubMed ID: 15962935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology.
    Reeder BJ; Svistunenko DA; Cooper CE; Wilson MT
    Antioxid Redox Signal; 2004 Dec; 6(6):954-66. PubMed ID: 15548893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.