BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2732250)

  • 1. Changes in conformation upon agonist binding, and nonequivalent labeling, of the membrane-spanning regions of the nicotinic acetylcholine receptor subunits.
    McCarthy MP; Stroud RM
    J Biol Chem; 1989 Jun; 264(18):10911-6. PubMed ID: 2732250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrophobic photoreagent 3-(trifluoromethyl)-3-m-([125I] iodophenyl) diazirine is a novel noncompetitive antagonist of the nicotinic acetylcholine receptor.
    White BH; Howard S; Cohen SG; Cohen JB
    J Biol Chem; 1991 Nov; 266(32):21595-607. PubMed ID: 1939189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine.
    White BH; Cohen JB
    Biochemistry; 1988 Nov; 27(24):8741-51. PubMed ID: 3242605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist.
    White BH; Cohen JB
    J Biol Chem; 1992 Aug; 267(22):15770-83. PubMed ID: 1639812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of drugs on the incorporation of a conformationally-sensitive, hydrophobic probe into the ion channel of the nicotinic acetylcholine receptor.
    Moore MA; McCarthy MP
    Biochim Biophys Acta; 1994 Mar; 1190(2):457-64. PubMed ID: 7511416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16.
    Blanton MP; McCardy EA; Huggins A; Parikh D
    Biochemistry; 1998 Oct; 37(41):14545-55. PubMed ID: 9772183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications.
    Blanton MP; Cohen JB
    Biochemistry; 1994 Mar; 33(10):2859-72. PubMed ID: 8130199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snake venom toxins, unlike smaller antagonists, appear to stabilize a resting state conformation of the nicotinic acetylcholine receptor.
    Moore MA; McCarthy MP
    Biochim Biophys Acta; 1995 May; 1235(2):336-42. PubMed ID: 7756343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lipids and detergents on the conformation of the nicotinic acetylcholine receptor from Torpedo californica.
    McCarthy MP; Moore MA
    J Biol Chem; 1992 Apr; 267(11):7655-63. PubMed ID: 1560000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between 3-(Trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine and tetracaine, phencyclidine, or histrionicotoxin in the Torpedo series nicotinic acetylcholine receptor ion channel.
    Gallagher MJ; Chiara DC; Cohen JB
    Mol Pharmacol; 2001 Jun; 59(6):1514-22. PubMed ID: 11353813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of phencyclidine binding sites on alpha and beta subunits of the nicotinic acetylcholine receptor from Torpedo ocellata electric organ using azido phencyclidine.
    Haring R; Kloog Y; Sokolovsky M
    J Neurosci; 1984 Mar; 4(3):627-37. PubMed ID: 6707728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining the noncompetitive antagonist-binding site in the ion channel of the nicotinic acetylcholine receptor in the resting state.
    Blanton MP; McCardy EA; Gallagher MJ
    J Biol Chem; 2000 Feb; 275(5):3469-78. PubMed ID: 10652341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of antibody binding on structural transitions of the nicotinic acetylcholine receptor.
    Tamamizu S; Butler DH; Lasalde JA; McNamee MG
    Biochemistry; 1996 Sep; 35(36):11773-81. PubMed ID: 8794758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the structure of the affinity-purified and lipid-reconstituted torpedo nicotinic acetylcholine receptor.
    Hamouda AK; Chiara DC; Blanton MP; Cohen JB
    Biochemistry; 2008 Dec; 47(48):12787-94. PubMed ID: 18991407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor.
    Blanton MP; Cohen JB
    Biochemistry; 1992 Apr; 31(15):3738-50. PubMed ID: 1567828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying the lipid-protein interface of the alpha4beta2 neuronal nicotinic acetylcholine receptor: hydrophobic photolabeling studies with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine.
    Hamouda AK; Sanghvi M; Chiara DC; Cohen JB; Blanton MP
    Biochemistry; 2007 Dec; 46(48):13837-46. PubMed ID: 17994769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeling of intramembrane segments of the alpha-subunit and beta-subunit of pure membrane-bound (Na+ + K+)-ATPase with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine.
    Jørgensen PL; Brunner J
    Biochim Biophys Acta; 1983 Nov; 735(2):291-6. PubMed ID: 6313057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor.
    Blount P; Merlie JP
    Neuron; 1989 Sep; 3(3):349-57. PubMed ID: 2642001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells.
    Ross A; Rapuano M; Prives J
    J Cell Biol; 1988 Sep; 107(3):1139-45. PubMed ID: 3417778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The muscarinic antagonists aprophen and benactyzine are noncompetitive inhibitors of the nicotinic acetylcholine receptor.
    Amitai G; Herz JM; Bruckstein R; Luz-Chapman S
    Mol Pharmacol; 1987 Nov; 32(5):678-85. PubMed ID: 3683366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.