BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 27322596)

  • 21. A Home-Based Bilateral Rehabilitation System With sEMG-based Real-Time Variable Stiffness.
    Liu Y; Guo S; Yang Z; Hirata H; Tamiya T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1529-1541. PubMed ID: 32991291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A membership-function-based broad learning system for human-robot interaction force estimation under drawing task.
    Tang B; Li R; Luo J; Pang M; Xiang K
    Med Biol Eng Comput; 2023 Aug; 61(8):1975-1992. PubMed ID: 37269470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotic assessment of neuromuscular characteristics using musculoskeletal models: A pilot study.
    Jayaneththi VR; Viloria J; Wiedemann LG; Jarrett C; McDaid AJ
    Comput Biol Med; 2017 Jul; 86():82-89. PubMed ID: 28511122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. sEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm.
    Bu D; Guo S; Li H
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model.
    Zhang S; Yu N; Guo Z; Huo W; Han J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4703-4712. PubMed ID: 38015663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation.
    Song Z; Zhang S
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A wearable system to assist impaired-neck patients: Design and evaluation.
    Ghasemi A; Sadedel M; Moghaddam MM
    Proc Inst Mech Eng H; 2024 Jan; 238(1):63-77. PubMed ID: 38031465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying the lumbar flexion-relaxation phenomenon: theory, normative data, and clinical applications.
    Neblett R; Mayer TG; Gatchel RJ; Keeley J; Proctor T; Anagnostis C
    Spine (Phila Pa 1976); 2003 Jul; 28(13):1435-46. PubMed ID: 12838103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous Motion Estimation of Knee Joint Based on a Parameter Self-Updating Mechanism Model.
    Li J; Li K; Zhang J; Cao J
    Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of Robot Interventions in a Task-based Rehabilitation: a case study.
    MajidiRad A; Adhikari V; Yihun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1825-1828. PubMed ID: 30440750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training.
    Cai S; Chen Y; Huang S; Wu Y; Zheng H; Li X; Xie L
    Front Neurorobot; 2019; 13():31. PubMed ID: 31214010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mirror-type rehabilitation training with dynamic adjustment and assistance for shoulder joint].
    Chen S; Yan Y; Xu G; Gao X; Huang K; Tai C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):351-360. PubMed ID: 33913296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force].
    Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning.
    Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.