These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27323286)

  • 1. A biologically-assisted curved muscle model of the lumbar spine: Model structure.
    Hwang J; Knapik GG; Dufour JS; Aurand A; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():53-59. PubMed ID: 27323286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biologically-assisted curved muscle model of the lumbar spine: Model validation.
    Hwang J; Knapik GG; Dufour JS; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():153-159. PubMed ID: 27484459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a personalized curved muscle model of the lumbar spine during complex dynamic exertions.
    Hwang J; Knapik GG; Dufour JS; Best TM; Khan SN; Mendel E; Marras WS
    J Electromyogr Kinesiol; 2017 Apr; 33():1-9. PubMed ID: 28107658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electromyography-assisted biomechanical cervical spine model: Model development and validation.
    Alizadeh M; Aurand A; Knapik GG; Dufour JS; Mendel E; Bourekas E; Marras WS
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105169. PubMed ID: 32919360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of magnetic resonance imaging-derived trunk muscle geometry with application to spine biomechanical modeling.
    Hwang J; Dufour JS; Knapik GG; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():60-64. PubMed ID: 27337268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation.
    Ghezelbash F; Shirazi-Adl A; Arjmand N; El-Ouaaid Z; Plamondon A
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1699-1712. PubMed ID: 27169402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of loads between lumbar tissues during the flexion-relaxation phenomenon.
    McGill SM; Kippers V
    Spine (Phila Pa 1976); 1994 Oct; 19(19):2190-6. PubMed ID: 7809753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk active response and spinal forces in sudden forward loading: analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model.
    Shahvarpour A; Shirazi-Adl A; Larivière C; Bazrgari B
    J Biomech; 2015 Jan; 48(1):44-52. PubMed ID: 25476501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical model of the lumbar spine during upright isometric flexion, extension, and lateral bending.
    Guzik DC; Keller TS; Szpalski M; Park JH; Spengler DM
    Spine (Phila Pa 1976); 1996 Feb; 21(4):427-33. PubMed ID: 8658245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of lumbar spine and muscle loading between male and female workers during box transfers.
    Gagnon D; Plamondon A; Larivière C
    J Biomech; 2018 Nov; 81():76-85. PubMed ID: 30286979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.
    Weston EB; Aurand A; Dufour JS; Knapik GG; Marras WS
    Ergonomics; 2018 Jun; 61(6):853-865. PubMed ID: 29241415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase of load-carrying capacity under follower load generated by trunk muscles in lumbar spine.
    Kim K; Kim YH; Lee S
    Proc Inst Mech Eng H; 2007 Apr; 221(3):229-35. PubMed ID: 17539579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lumbar muscle activities in rapid three-dimensional pulling tasks.
    Thelen DG; Ashton-Miller JA; Schultz AB
    Spine (Phila Pa 1976); 1996 Mar; 21(5):605-13. PubMed ID: 8852317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2016 Apr; 49(6):946-952. PubMed ID: 26475220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels.
    Ignasiak D; Ferguson SJ; Arjmand N
    J Biomech; 2016 Sep; 49(13):3074-3078. PubMed ID: 27515441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis.
    Kim K; Lee SK; Kim YH
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1165-74. PubMed ID: 21138234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of personalized spinal profile on its biomechanical response in an EMG-assisted optimization musculoskeletal model of the trunk.
    Larivière C; Eskandari AH; Mecheri H; Ghezelbash F; Gagnon D; Shirazi-Adl A
    J Biomech; 2024 Jan; 162():111867. PubMed ID: 37992597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.