These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 27323286)
21. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk. Kingma I; Staudenmann D; van Dieën JH J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071 [TBL] [Abstract][Full Text] [Related]
22. A subject-specific biomechanical control model for the prediction of cervical spine muscle forces. Van den Abbeele M; Li F; Pomero V; Bonneau D; Sandoz B; Laporte S; Skalli W Clin Biomech (Bristol, Avon); 2018 Jan; 51():58-66. PubMed ID: 29227919 [TBL] [Abstract][Full Text] [Related]
23. An EMG-assisted modeling approach to assess passive lumbar tissue loading in vivo during trunk bending. Ning X J Electromyogr Kinesiol; 2017 Oct; 36():1-7. PubMed ID: 28633066 [TBL] [Abstract][Full Text] [Related]
24. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine. Zhu R; Niu WX; Wang ZP; Pei XL; He B; Zeng ZL; Cheng LM Biomed Res Int; 2018; 2018():4517471. PubMed ID: 29511680 [TBL] [Abstract][Full Text] [Related]
25. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. Ignasiak D; Dendorfer S; Ferguson SJ J Biomech; 2016 Apr; 49(6):959-966. PubMed ID: 26684431 [TBL] [Abstract][Full Text] [Related]
26. Differences in lumbar spine load due to posture and upper limb external load. Kamińska J; Roman-Liu D; Zagrajek T; Borkowski P Int J Occup Saf Ergon; 2010; 16(4):421-30. PubMed ID: 21144261 [TBL] [Abstract][Full Text] [Related]
27. Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine. Eskandari AH; Arjmand N; Shirazi-Adl A; Farahmand F J Biomech; 2017 May; 57():18-26. PubMed ID: 28365064 [TBL] [Abstract][Full Text] [Related]
28. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks. Arjmand N; Shirazi-Adl A; Bazrgari B Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948 [TBL] [Abstract][Full Text] [Related]
29. Computational model of the lumbar spine musculature: implications of spinal surgery. Gatton ML; Pearcy MJ; Pettet GJ Clin Biomech (Bristol, Avon); 2011 Feb; 26(2):116-22. PubMed ID: 20956031 [TBL] [Abstract][Full Text] [Related]
30. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091 [TBL] [Abstract][Full Text] [Related]
31. Sensitivity of single-equivalent trunk extensor muscle models to anatomical and functional assumptions. van Dieën JH; de Looze MP J Biomech; 1999 Feb; 32(2):195-8. PubMed ID: 10052926 [TBL] [Abstract][Full Text] [Related]
32. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing. Marras WS; Knapik GG; Ferguson S Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950 [TBL] [Abstract][Full Text] [Related]
33. A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine. Gagnon D; Plamondon A; Larivière C J Biomech; 2016 Sep; 49(13):2938-2945. PubMed ID: 27469898 [TBL] [Abstract][Full Text] [Related]
34. Wheelchair pushing and turning: lumbar spine and shoulder loads and recommended limits. Weston EB; Khan SN; Marras WS Ergonomics; 2017 Dec; 60(12):1754-1765. PubMed ID: 28627334 [TBL] [Abstract][Full Text] [Related]
35. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study. Naserkhaki S; Jaremko JL; Adeeb S; El-Rich M J Biomech; 2016 Apr; 49(6):974-982. PubMed ID: 26493346 [TBL] [Abstract][Full Text] [Related]
36. Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Weston EB; Alizadeh M; Knapik GG; Wang X; Marras WS Appl Ergon; 2018 Apr; 68():101-108. PubMed ID: 29409622 [TBL] [Abstract][Full Text] [Related]
37. A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles. Patwardhan AG; Meade KP; Lee B J Biomech Eng; 2001 Jun; 123(3):212-7. PubMed ID: 11476363 [TBL] [Abstract][Full Text] [Related]
38. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination. Arshad R; Zander T; Bashkuev M; Schmidt H Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589 [TBL] [Abstract][Full Text] [Related]
39. Feasibility of compressive follower load on spine in a simplified dynamic state: a simulation study. Kim BS; Lim TH; Kwon TK; Han KS Biomed Mater Eng; 2014; 24(6):2319-29. PubMed ID: 25226932 [TBL] [Abstract][Full Text] [Related]
40. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture. Kim K; Kim YH J Biomech Eng; 2008 Aug; 130(4):041005. PubMed ID: 18601447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]