These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 27323331)

  • 1. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry.
    Qin J; Cheng Y; Sun M; Yan L; Shen G
    Sci Total Environ; 2016 Nov; 569-570():1-8. PubMed ID: 27323331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of biochar on the emissions, soil distribution, and nematode control of 1,3-dichloropropene.
    Ashworth DJ; Yates SR; Shen G
    J Environ Sci Health B; 2017 Feb; 52(2):99-106. PubMed ID: 28099087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for 1,3-Dichloropropene Dissipation in Biochar-Amended Soils.
    Wang Q; Gao S; Wang D; Spokas K; Cao A; Yan D
    J Agric Food Chem; 2016 Mar; 64(12):2531-40. PubMed ID: 26954066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.
    Shen G; Ashworth DJ; Gan J; Yates SR
    Environ Sci Technol; 2016 Feb; 50(3):1182-9. PubMed ID: 26726779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cow manure-derived biochar: Its catalytic properties and influential factors.
    Qin J; Qian S; Chen Q; Chen L; Yan L; Shen G
    J Hazard Mater; 2019 Jun; 371():381-388. PubMed ID: 30870642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ; Schmidt W; Schüth C
    Chemosphere; 2018 Jul; 203():34-43. PubMed ID: 29605747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of biochars produced from different sources on arsenic adsorption and desorption in soil].
    Guan LZ; Zhou JJ; Zhang Y; Zhang GC; Zhang JH; Chan ZX
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):2941-6. PubMed ID: 24483091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloropicrin Emission Reduction by Soil Amendment with Biochar.
    Wang Q; Yan D; Liu P; Mao L; Wang D; Fang W; Li Y; Ouyang C; Guo M; Cao A
    PLoS One; 2015; 10(6):e0129448. PubMed ID: 26075904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of chromate reduction in soils by surface modified biochar.
    Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R
    J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of ciprofloxacin and Cu
    Yang Z; Xing R; Zhou W
    Environ Sci Pollut Res Int; 2019 May; 26(14):14382-14392. PubMed ID: 30868459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil.
    Fang W; Wang Q; Han D; Liu P; Huang B; Yan D; Ouyang C; Li Y; Cao A
    Sci Total Environ; 2016 Sep; 565():339-345. PubMed ID: 27177140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effect of organic amendment and environmental factors on degradation of 1,3-dichloropropene and chloropicrin in soil.
    Qin R; Gao S; Ajwa H; Hanson BD; Trout TJ; Wang D; Guo M
    J Agric Food Chem; 2009 Oct; 57(19):9063-70. PubMed ID: 19722521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions.
    Wang Q; Gao S; Wang D; Cao A
    Environ Pollut; 2022 Jun; 303():119113. PubMed ID: 35271955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars.
    Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of p-Nitrophenol on Biochars: Role of Persistent Free Radicals.
    Yang J; Pan B; Li H; Liao S; Zhang D; Wu M; Xing B
    Environ Sci Technol; 2016 Jan; 50(2):694-700. PubMed ID: 26691611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of wheat and rice straw biochars on pyrazosulfuron-ethyl sorption and persistence in a sandy loam soil.
    Manna S; Singh N
    J Environ Sci Health B; 2015; 50(7):463-72. PubMed ID: 25996810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep injection and the potential of biochar to reduce fumigant emissions and effects on nematode control.
    Gao S; Doll DA; Stanghellini MS; Westerdahl BB; Wang D; Hanson BD
    J Environ Manage; 2018 Oct; 223():469-477. PubMed ID: 29957420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties.
    Xu D; Zhao Y; Sun K; Gao B; Wang Z; Jin J; Zhang Z; Wang S; Yan Y; Liu X; Wu F
    Chemosphere; 2014 Sep; 111():320-6. PubMed ID: 24997935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides.
    Yavari S; Malakahmad A; Sapari NB; Yavari S
    J Environ Manage; 2017 May; 193():201-210. PubMed ID: 28226259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.