BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 27323404)

  • 21. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition.
    Liu Z; Xiao X; Qiu WR; Chou KC
    Anal Biochem; 2015 Apr; 474():69-77. PubMed ID: 25596338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1).
    Xiao X; Hui MJ; Liu Z; Qiu WR
    J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition.
    Xu Y; Wen X; Shao XJ; Deng NY; Chou KC
    Int J Mol Sci; 2014 May; 15(5):7594-610. PubMed ID: 24857907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.
    Cheng X; Xiao X; Chou KC
    Gene; 2017 Sep; 628():315-321. PubMed ID: 28728979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information.
    Cheng X; Xiao X; Chou KC
    Bioinformatics; 2018 May; 34(9):1448-1456. PubMed ID: 29106451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences.
    Chen W; Feng P; Yang H; Ding H; Lin H; Chou KC
    Oncotarget; 2017 Jan; 8(3):4208-4217. PubMed ID: 27926534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition.
    Xu Y; Ding J; Wu LY; Chou KC
    PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2006 Aug; 347(1):150-7. PubMed ID: 16808903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids.
    Xu Y; Ding J; Wu LY
    PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A summary of computational resources for protein phosphorylation.
    Xue Y; Gao X; Cao J; Liu Z; Jin C; Wen L; Yao X; Ren J
    Curr Protein Pept Sci; 2010 Sep; 11(6):485-96. PubMed ID: 20491621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using ensemble classifier to identify membrane protein types.
    Shen HB; Chou KC
    Amino Acids; 2007; 32(4):483-8. PubMed ID: 17031474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals.
    Cheng X; Zhao SG; Xiao X; Chou KC
    Oncotarget; 2017 Aug; 8(35):58494-58503. PubMed ID: 28938573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection.
    Xu Y; Ding YX; Ding J; Wu LY; Xue Y
    Sci Rep; 2016 Dec; 6():38318. PubMed ID: 27910954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals.
    Cheng X; Zhao SG; Xiao X; Chou KC
    Bioinformatics; 2017 Feb; 33(3):341-346. PubMed ID: 28172617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. iRSpot-EL: identify recombination spots with an ensemble learning approach.
    Liu B; Wang S; Long R; Chou KC
    Bioinformatics; 2017 Jan; 33(1):35-41. PubMed ID: 27531102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach.
    Liu B; Fang L; Liu F; Wang X; Chou KC
    J Biomol Struct Dyn; 2016; 34(1):223-35. PubMed ID: 25645238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites.
    Cheng X; Zhao SG; Lin WZ; Xiao X; Chou KC
    Bioinformatics; 2017 Nov; 33(22):3524-3531. PubMed ID: 29036535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints.
    Xiao X; Min JL; Wang P; Chou KC
    J Theor Biol; 2013 Nov; 337():71-9. PubMed ID: 23988798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking.
    Xiao X; Min JL; Wang P; Chou KC
    PLoS One; 2013; 8(8):e72234. PubMed ID: 24015221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.